Отзыв статьи: РАЗРАБОТКА ВАКЦИНЫ ОТ МАЛЯРИИ: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ

  • Etefia Etefia Калабарский университет, Штат Росс-Ривер, Калабар, PMB 1115 Нигерия
  • Paul Inyang-Etoh Калабарский университет, Штат Росс-Ривер, Калабар, PMB 1115 Нигерия
Ключевые слова: малярия, иммунитет, Plasmodium falciparum, вакцина

Аннотация

Отзыв из печати статьи: Etefia Etefia, Paul Inyang-Etoh. Разработка вакцины от малярии: проблемы и перспективы // Университетский терапевтический вестник. 2024. Т. 6. № 1. С. 14–25. DOI: https://doi.org/10.56871/UTJ.2024.82.25.002.

Статья, опубликованная в научно-практическом журнале «University therapeutic journal» (2024. Т. 6, № 1. С. 14–25) над названием «Разработка вакцины от малярии: проблемы и перспективы», DOI: https://doi.org/10.56871/UTJ.2024.82.25.002, авторами которой являются Etefia Etefia (e-mail: etefiaetefia1@gmail.com), Paul Inyang-Etoh, отзывается из печати редактором с согласия издателя.

Изъятие (ретракция) публикации обусловлено выявлением дублирующей публикации под названием Malaria Vaccine Development: Challenges and Prospects в журнале «Medical and Pharmaceutical Journal» (2023. Vol. 2, Issue 1, pp. 28–42), DOI: https://doi.org/10.55940/medphar202225.

 

Разработка лицензированных вакцин против малярии являлась сложной задачей из-за многоступенчатого жизненного цикла, антигенной изменчивости и большого генетического разнообразия плазмодия, что создавало проблему подбора подходящего кандидата на вакцину среди тысяч антигенов плазмодия. Разработано несколько вакцин для различных стадий плазмодия, которые включают вакцину на предэритроцитарной стадии, вакцины на стадии крови с использованием белков плазмодия, вакцины из плаценты и вакцины, блокирующие передачу инфекции (TBV), которые подавляют половую стадию развития малярийных паразитов. Однако нет такой вакцины, которая являлась бы полностью эффективной и обладала высокой реактогенностью. Из-за неспособности разработать эффективные вакцины для борьбы с одной стадией жизненного цикла плазмодия продолжается разработка эффективной многоступенчатой или многовалентной вакцины против малярии (Мультимальвакс), которая могла бы стать наилучшим подходом для нейтрализации спорозоитов, превращающихся в мерозоиты, а также мерозоитов, выходящих из гепатоцитов и эритроцитов, для прекращения распространения спорозоитов и блокирования половой стадии развития малярийного плазмодия. Таким образом, глубокое понимание потенциальных мишеней вакцины и того, как действует иммунитет, является ключевым этапом разработки полностью эффективной вакцины против малярии.

Литература

Alonso P.L. Malaria: deploying a candidate vaccine (RTS, S/AS02A) for an old scourge of humankind. International Microbiology. 2006; 9: 83–93.

Arama C. and Troye-Blomberg, M. The path of malaria vaccine development: challenges and perspectives. J Intern Med. 2014; 275: 456–66.

Armistead J.S., Morlais I., Mathias D.K. et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. Infection and Immunity. 2014; 82: 818–29.

Ballou W.R., Rothbard J., Wirtz R.A. et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985; 228(4702): 996–9.

Ballou W.R., Cahill C.P. Two decades of commitment to malaria vaccine development: Glaxo Smith Kline Biologicals. American Journal of Tropical Medicine and Hygiene. 2007; 77(6 Suppl): 289–95.

Ballou W.R. The development of the RTS, S malaria vaccine candidate: challenges and lessons. Parasite Immunol. 2009; 31(9): 492–500.

Beeson J.G., Kurtovic L., Dobaño et al. Challenges and strategies for developing efficacious and long-las­ting malaria vaccines. Science Translational Medicine. 2019; 11(474): eaau1458.

Bijker E.M., Borrmann S., Kappe S.H. et al. Novel approaches to whole sporozoite vaccination against malaria. Vaccine. 2015; 33(52): 7462–8.

Blagborough A.M. Sinden R.E. Plasmodium berghei HAP2 induces strong malaria transmission-blocking immunity in vivo and in vitro. Vaccine. 2009; 27(38): 5187–94.

Bousema T., Dinglasan R.R., Morlais I. et al. Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS One. 2012; 7: e42821.

Canepa G.E., Molina-Cruz A., Yenkoidiok-Douti L. et al. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines. 2018; 3: 26.

Carter R., Mendis K.N., Miller L.H. et al. Malaria transmission-blocking vaccines-how can their deve­lopment be supported? Nat Med. 2000; 6: 241–4.

Chêne A., Houard, S., Nielsen, et al. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malaria journal. 2016; 15: 476.

Chilengi R. Clinical development of malaria vaccines: should earlier trials be done in malaria endemic countries? Human Vaccines. 2009; 5: 627–36.

Cohen S., Mc G.I. and Carrington, S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961; 192: 733–7.

Cooney L.A., Gupta M., Thomas S. et al. Short-lived effector CD8 T cells induced by genetically attenuated malaria parasite vaccination express CD11c. Infection and immunity. 2013; 81(11): 4171–81.

Crosnier C., Bustamante L.Y., Bartholdson S.J. et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011; 480: 534–7.

Cutts J.C., Agius P.A., Lin Z. et al. Pregnancy-speci­fic malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Medicine. 2020; 18: 14.

D’Antonio L.E., Keshavarz-Valian H. and Alger N.E. Malaria vaccine antigen(s): detergent solubilization, partial isolation, and recovery of immunoprotective activity. Infection and Immunity. 1984; 43(1): 442–4.

Dame J.B., Williams J.L., McCutchan T.F. et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science. 1984; 225(4662): 593–9.

Dessens J.T., Sidén-Kiamos I., Mendoza V. et al. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Molecular Microbiology. 2003; 49: 319–29.

Doritchamou J.Y.A., Morrison R., Renn J.P. et al. Placental malaria vaccine candidate antigen VAR2CSA displays a typical domain architecture in some Plasmodium falciparum strains. Communication Biology. 2019; 2: 457.

Douglas A.D., Williams A.R., Illingworth J.J. et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nature communications. 2011; 2: 601.

Douglas A.D., Baldeviano G.C., Lucas C M. et al. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell host and microbe. 2015; 17(1): 130–9.

Doumbo O.K., Niaré K., Healy S.A. et al. Mala­ria Transmission-Blocking Vaccines: Present Status and Future Perspectives. In: Towards Malaria Eli­mination — A Leap Forward. Manguin S. and Dev V. (Eds.). 2008; available at https://www.intechopen.com/books/towards-malaria-elimination-a-leap-forward/malaria-transmission-blocking-vaccines-present-status-and-future-perspectives

Douradinha B., van Dijk M., van Gemert G.J. et al. Immunization with genetically attenuated P52-deficient Plasmodium berghei sporozoites induces a long-las­ting effector memory CD8 + T cell response in the li­ver. Journal of Immune Based Therapies and Vaccines. 2011; 9(1): 6.

Duffy P.E., Kaslow D.C. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infection and Immunity. 1997; 65: 1109–13.

Duffy P.E., Gorres J.P. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines. 2020; 5: 48.

Edozien J.C., Gilles H.M., Udeozo I.O. K. Adult and cord-blood gammaglobulin and immunity to malaria in Nigerians. Lancet. 1962; 280, 951–5.

Engers H.D., Godal T. Malaria vaccine development: current status. Parasitology Today. 1998; 1(2): 56–64.

Epstein J.E., Tewari K., Lyke K.E. et al. Live attenua­ted malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science. 2011; 334: 475–80.

Epstein J.E., Paolino K.M., Richie T.L. et al. Protection against Plasmodium falciparum malaria by

PfSPZ Vaccine. Journal of Clinical Investigation Insight. 2017; 2(1): e89154.

Ewer K.J., O’Hara G.A., Duncan C.J. et al. Protective CD8 + T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nature Communications. 2013; 4: 2836.

Feng G., Boyle M.J., Cross N. et al. Human immunization with a polymorphic malaria vaccine candidate induced antibodies to conserved epitopes that promote functional antibodies to multiple parasite strains. Journal of Infectious Diseases. 2018; 218: 35–43.

Fowkes F.J., Richards J.S., Simpson J.A. et al. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Medicine. 2010; 7: e1000218.

Fried M., Nosten F., Brockman A. et al. Maternal antibodies block malaria. Nature. 1998; 395: 851–2.

Gamain B., Trimnell A.R., Scheidig C.S. et al. Identification of multiple chondroitin sulfate A (CSA)-bin­ding domains in the var2CSA gene transcribed in CSA-binding parasites. Journal of Infectious Diseases. 2005; 191(6): 1010–3.

Gangnard S., Lewit-Bentley A., Dechavanne S. et al. Structure of the DBL3X-DBL4ε region of the

VAR2CSA placental malaria vaccine candidate: insight into DBL domain interactions. Scientific reports. 2015; 5: 14868.

Girad M.P., Reed Z.H., Friede M. et al. A review of human vaccine research and development: malaria. Vaccine. 2007; 25: 1567–80.

Guitard, J., Cottrell G., Magnouha N.M. et al. Diffe­rential evolution of anti-VAR2CSA-IgG3 in primigravidae and multigravidae pregnant women infected by Plasmodium falciparum. Malaria Journal. 2008; 11, 7: 10.

Good M.F., Reiman J.M., Rodriguez I.B. et al. Cross-species malaria immunity induced by chemically attenuated parasites. The Journal of Clinical Investigation. 2013; 123(8): 3353–62.

Gwadz R.W., Carter R., Green I. Gamete vaccines and transmission blocking immunity in malaria. Bulletin of the World Health Organization. 1979; 57(Suppl 1): 175–80.

Hill A.V.S. Pre-erythrocytic malaria vaccines: towards greater efficacy. Nature Review and Immunology. 2006; 6: 21–32.

Hill A.V., Reyes-Sandoval A., O’Hara G. et al. Prime-boost vectored malaria vaccines: progress and prospects. Prime-boost vectored malaria vaccines: progress and prospects. Human Vaccines. 2010; 6(1): 78–83.

Hjerrild K.A., Jin J., Wright K.E. et al. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system. Sci. Rep. 2014; 6: 30357.

Hoffman S.L., Goh L.M., Luke T.C. et al. Protection of humans against malaria by immunization with radiation attenuated Plasmodium falciparum sporozoites. Journal of Infectious Diseases. 2002; 185(8): 1155–164.

Hoffman S.L., Billingsley P.F., James E. et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Human Vaccines. 2010; 6: 97–106.

Holder A.A., Guevara P.J.A., Uthaipibull C. et al. Merozoite surface protein 1, immune evasion, and vaccines against asexual blood stage malaria. Parassitologia. 1999; 41: 409–14.

Hollingdale M.R., Sedegah M. Development of whole sporozoite malaria vaccines. Expert Rev Vaccines. 2017; 16(1): 45–54.

Ishizuka A.S., Lyke K.E., DeZure A. et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nature Medicine. 2016; 22, 614–23.

Jin J., Tarrant R.D., Bolam E.J. et al. Production, quality control, stability, and potency of cGMP produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. NPJ Vaccines. 2018; 3: 32.

Kariu T., Ishino T., Yano K. et al. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Molecular microbiology. 2006; 59(5): 1369–79.

Kaushal D.C., Carter R., Rener J. et al. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites tomosquitoes. Journal of Immunology. 1983; 131: 2557–62.

Khunrae P., Dahlbäck M., Nielsen M.A. et al. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies. Journal of Molecular Biology. 2010; 397(3): 826–34.

Li Y., Leneghan D.B., Miura K. et al. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Scientific reports. 2016; 6: 18848.

Luo M., Samandi L.Z., Wang Z. et al. Synthetic nanovaccines for immunotherapy. Journal of Controlled Release. 2017; 263: 200–10.

Mahmoudi S., Keshavarz H. Efficacy of phase 3 trial of RTS, S/AS01 malaria vaccine: The need for an alternative development plan. Human Vaccines and Immunotherapeutics. 2017; 13 (9): 2098–2101.

Mahmoudi S., Keshavarz H. Malaria vaccine development: the need for novel approaches. Iran Journal of Parasitology. 2018; 13(1): 1–10.

Malkin E.M., Durbin A.P., Diemert D.J. et al. A transmission blocking vaccine for Plasmodium vivax malaria. Vaccine. 2005; 23: 3131–8.

McShane H. Prime-boost immunization strategies for infectious diseases. Current Opinion in Moecular Therapeutics. 2002; 4(1): 23–7.

Mendis K.N., Targett G.A. Immunisation against ga­metes and asexual erythrocytic stages of a rodent malaria parasite. Nature. 1979; 277: 389–91.

Mikolajczak S.A., Lakshmanan V., Fishbaugher M. et al. A next-generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion. Molecular therapy: the Journal of the American Society of Gene Therapy. 2014 2(9): 1707–15.

Miura K. Progress and prospects for blood-stage malaria vaccines. Expert Review of Vaccines; 2016; 15(6): 765–81.

Miura K., Swihart B.J., Deng B. et al. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay. Vaccine. 2016; 34: 4145–51.

Mo A.X., Pesce J., Hall B.F. Exploring immunological mechanisms of the whole sporozoite vaccination against P. falciparum malaria. Vaccine. 2015; 33(25): 2851–7.

Mordmuller B., Surat G., Lagler H. et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017; 542: 445–9.

Mordmuller B., Sulyok M., Egger-Adam D. et al. First-in-human, randomized, double-blind clinical trial of differentially adjuvanted PAMVAC, a vaccine candidate to prevent pregnancy associated malaria. Clinical Infectious of Diseases. 2019; 69: 1509–16.

Moyer T.J., Zmolek A.C., Irvine D.J. Beyond antigens and adjuvants: Formulating future vaccines. Journal of Clinical Investigation. 2016; 126, 799–808.

Mueller A.K., Labaied M., Kappe S.H. et al. Gene­tically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature. 2010; 433: 164–7.

Mwangoka G., Ogutu B., Msambichaka B. et al. Experience and challenges from clinical trials with malaria vaccines in Africa. Malaria Journal. 2013; 12: 86.

Ndungu F.M., Bull P.C., Ross A.B.S. et al. Naturally acquired immunoglobulin (Ig)G subclass antibodies to crude asexual Plasmodium falciparum lysates: evidence for association with protection for IgG1 and disease for IgG2. Parasite Immunology. 2002; 24: 77–82.

Neafsey D.E., Juraska M., Bedford T. et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. New England Journal of Medicine. 2015; 373: 2025–37.

Nussenzweig R.S., Vanderberg J., Most H. et al. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature. 1967; 216(5111): 160–2.

Ockenhouse C.F., Sun P.F., Lanar D.E. et al. Phase I/IIa safety, immunogenicity, and efficacy trial of

NYVAC-Pf7, a poxvectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. Journal of Infectious Diseases. 1998; 177: 1664–73.

Ogun S.A., Dumon-Seignovert L., Marchand J.B. et al. The oligomerization domain of C4-binding protein (C4bp) acts as an adjuvant, and the fusion protein comprised of the 19-kilodalton merozoite surface protein 1 fused with the murine C4bp domain protects mice against malaria. Infection and immunity. 2008; 76(8): 3817–23.

Ogutu B.R., Apollo O.J., McKinney D. et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One. 2009; 4: e4708.

Ouattara A., Mu J., Takala-Harrison S., Saye R. et al. Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. Malaria Journal. 2010; 9: 175.

Ouattara A., Barry A. E., Dutta S. et al. Designing malaria vaccines to circumvent antigen variability. Vaccine. 2015; 33: 7506–12.

Outchkourov N.S., Roeffen W., Kaan A. et al. Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proceedings of the National Academy of Science. 2008; 105: 4301–5.

Pandey A.K., Reddy K.S., Sahar T. et al. Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending pa­rasite-neutralizing antibodies. Infection and Immunity. 2013; 81: 441–51.

Payne R.O., Silk S.E., Elias S.C. et al. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex inte­ractions. Journal Clinical Investigation insight. 2017; 2(21): e96381.

Peduzzi E., Westerfeld N., Zurbriggen R. et al. Contribution of influenza immunity and virosomal-formula­ted synthetic peptide to cellular immune responses in a phase I subunit malaria vaccine trial. Clinical Immunology. 2008; 12: 188–97.

Qian F., Wu Y., Muratova O. et al. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates. Vaccine. 2007; 25(20): 3923–33.

Quakyi I.A., Carter R., Rener J. et al. The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibo­dies. Journal of Immunology. 1987; 139: 4213–7.

Raj D.K., Nixon C.P., Nixon C.E. et al. Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science. 2014; 344 (6186): 871–7.

Raj D.K., Mohapatra A.D., Jnawali A. et al. Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature. 2020; 582: 104–8.

Rener J., Graves P.M., Carter R. et al. Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. Journal of Experimental Medicine. 1983; 158: 976–81.

Reyes-Sandoval A., Berthoud T, Alder N. et al. Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8 + T-cell responses. Infection and Immunity. 2010; 78(1): 145–53.

Richards J.S., Arumugam T.U., Reiling L. et al. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker deve­lopment. Journal of Immunology. 2013; 191: 795–809.

Richie T.L., Billingsley P.F., Sim B.K.L. et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine. 2015; 33: 7452–61.

Ricke C.H., Staalsoe T., Koram K. et al. Plasma antibo­dies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. Journal of Immunology. 2000; 165(6): 3309–16.

Sabchareon A., Burnouf T., Ouattara D. et al. Parasitologic and clinical human response to immunoglo­bulin administration in falciparum malaria. American journal of tropical medicine and hygiene. 1991; 45(3): 297–308.

Sack B.K., Keitany G.J., Vaughan A.M. et al. Mecha­nisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites. PLoS Pathogens. 2015; 11(5): e1004855.

Sack B., Kappe S.H., Sather D.N. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines. 2017; 16(5): 403–14.

Salanti A., Staalsoe T., Lavstsen T. et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Molecular Microbiology. 2003; 49(1): 179–91.

Salanti A., Dahlback M., Turner L. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. Journal of Experimental Medicine. 2004; 200 (9): 1197–1203.

Sallusto F., Lanzavecchia A., Araki K. et al. From vaccines to memory and back. Immunity. 2010; 33: 451–63.

Schijns V.E., Lavelle E.C. Trends in vaccine adjuvants. Expert Review of Vaccines. 2011; 10: 539–50.

Seder R.A., Chang L.J., Enama M.E. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013; 341: 1359–65.

Singer M., Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends in Parasitology. 2017; 33 (3): 202–13.

Sinnis P., Zavala F. The skin: where malaria infection and the host immune response begin. Seminars in Immunopatholog. 2012; 34 (6): 787–92.

Sirima S.B., Richert L., Chêne A. et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo controlled study. Lancet Infectious Diseases. 2020; 20(5): 585–97.

Srinivasan P., Miura K., Diouf A. et al. A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. NPJ Vaccines. 2017; 2: 14.

Takala S.L., Coulibaly D., Thera M.A. et al. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Science Translational Medicine. 2009; 1(2): 2ra5.

Talaat K.R., Ellis R.D., Hurd J. et al. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults. PloS One. 2016; 11(10): e0163144.

Terheggen U., Drew D.R., Hodder A.N. et al. Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines. BMC Medicine. 2014; 12: 183.

Tessema S.K., Nakajima R., Jasinskas A. et al. Protective immunity against severe malaria in children is associated with a limited repertoire of antibodies to conserved PfEMP1 variants. Cell Host and Microbe. 2019; 26: 579–90.

Tran T.M., Ongoiba A., Coursen J. et al. Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. Journal of Infectious Diseases. 2012; 209 (5): 789–98.

University of Oxford. MultiMalVax (A Multi-Stage Malaria Vaccine): Seventh frame work report. 2017; available at docs-results-305-305282-final1-multimalvax-final-report-final-170526.pdf

Van Buskirk K.M., O’Neill M.T., De La Vega P. et al. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(31): 13004–9.

Van Schaijk B.C., Ploemen I.H., Annoura T., Vos M. W. et al. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. eLife. 2014; 3: e03582.

Vermeulen A.N., Ponnudurai T., Beckers P.J. et al. Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. Journal of Experimental Medicine. 1985; 162: 1460–76.

Villasis E., Lopez-Perez M., Torres K. et al. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru. Malaria Journal. 2012; 11: 361.

Wilde M.D., Glabais J.C. Hybrid protein between CS from Plasmodium and HBsAG. United States Patent. 1991; 5928902.

Williams A.R., Douglas A.D., Miura K. et al. Enhan­cing blockade of Plasmodium falciparum erythrocyte invasion: Assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathogens. 2012; 8: e1002991.

Williamson K.C., Keister D.B., Muratova O. et al. Recombinant Pfs230 a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infecti­vity of Plasmodium falciparum to mosquitoes. Mole­cular and Biochemical Parasitology. 1995; 75: 33–42.

Wu Y., Przysiecki C., Flanagan E. et al. Sustained high-titer antibody responses induced by conjugating malarial vaccine candidate to outer-membrane protein complex. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(48): 18243–8.

Wu Y., Ellis R.D., Shaffer D. et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with Montanide ISA 51. PLOS One. 2008; 3, (7): e2636.

Опубликован
2024-06-05
Как цитировать
Etefia , E., & Inyang-Etoh, P. (2024). Отзыв статьи: РАЗРАБОТКА ВАКЦИНЫ ОТ МАЛЯРИИ: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ. Университетский терапевтический вестник, 6(1), 14-25. https://doi.org/10.56871/UTJ.2024.82.25.002
Раздел
Статьи