РОЛЬ МОЧЕВОЙ КИСЛОТЫ В НОРМЕ И ПРИ ПАТОЛОГИИ
Аннотация
Ураты — конечный продукт метаболизма пуринов в организме человека. Доминирующим источником уратов являются эндогенные пурины, в то время как остальные поступают с пищей. Приблизительно две трети уратов выводятся почками, остальная часть — кишечником. Почечная элиминация уратов существенно зависит от конкретных транспортеров, включая URAT1, GLUT9 и BCRP. Исследования, в которых оценивались биологические эффекты уратов, показали очень разные результаты. Ураты обладают как антиоксидантными, так и провоспалительными свойствами. Гиперурикемия может привести к образованию кристаллов моноурата натрия, которые распознаются иммунной системой как сигналы опасности. Этот иммунный ответ приводит к активации инфламмасомы NLRP3 и, в конечном счете, к продукции и высвобождению интерлейкина-1b (IL-1b) и IL-18, которые через воспаление инициируют гибель клеток и некровоспаление. Было также продемонстрировано, что растворимые ураты опосредованно действуют на почки, вызывая гипертензию, и могут вызывать длительное перепрограммирование миелоидных клеток. Считается, что ураты опосредуют большинство физиологических эффектов гиперурикемии и подагры, что свидетельствует о том, что эта биологически активная молекула более эффективна, чем просто «конечный продукт» метаболизма пуринов.
Литература
Amaro S., Laredo C., Remu A., Liull L., Rudilosso S. et al. Uric acid therapy prevents early ischemic stroke progression a tertiary analysis of the URICO-ICTUS Trial (Efficacy study of combined treatment with uric acid and r-tPA in acute ischemic stroke. Stroke. 2016;47(11):2874–2876.
Andres M., Quintanilla M.A., Sivera F. S., Anchez-Pava J. et al. Silent monosodium urate crystals deposits associate with severe coronary calcification in asymptomatic hyperuricemia: An exploratory study. Arthritis Rheumatol. 2016;68(6):1531–9. DOI: 10.1002/art.39581.
Ayoub-Charette S., Liu Q., Khan T.A., Au-Yeung F. et al. Important food sources of fructose-containing sugars and incident gout: a systematic review and meta-analysis of prospective cohort studies. BMJ Open. 2019;9:241–271.
Benn C.L., Dua P., Gurrell R., Loudon P., Pike A. et al. Physiology of hyperuricemia and urate-lowering treatments. Front Med. 2018;5:160.
Biscaglia S., Ceconi C., Malagu M. et al Uric acid and coronary artery disease: an elusive link deserving further attention. Int. J. Cardiol. 2016;13:28–32.
Borgi L., McMullan C., Wohlhueter A., Curhan G.C., Fisher N.D., Forman J.P. Effect of uric acid lowering agents on endothelial function: a randomized double-blind, placebo-controlled trial. Hypertension. 2017;69(2):243–248.
Cavalcanti N.G., Marques C.D., Lins E., Lins T.U. et al. Cytokine profile in gout: inflammation driven by IL-6 and IL-18. Immunol Investig. 2016;45:383–395.
Chhana A., Pool B., Callon K.E. et al. Monosodium urate crystals reduce osteocyte viability and indirectly promote a shift in osteocyte function towards a proinflammatory and proresorptive state. Arthritis Res Ther. 2018;20:208.
Desai J., Steiger S., Anders H.J. Molecular pathophysiology of gout. Trends Mol Med. 2017;23:756–768.
Ebrahimpour-Koujan S., Saneei P., Larijani B., Esmaillzadeh A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;6:1–10.
Franklin B.S., Mangan M.S., Latz E. Crystal formation in inflammation. Annu Rev Immunol. 2016;34:173–202.
Gunawardhana L., McLean L., Punzi H.A. et al. Effect of febuxostat on ambulatory blood pressure in subjects with hyperuricemia and hypertension: a phase 2 randomized placebo-controlled study. J. Am. Heart Assoc. 2017;6:56–67.
Hannawi S., AlSalmi I., Moller I., Naredo E. Uric acid is independent cardiovascular risk factor, as manifested by increased carotid intima-media thickness in rheumatoid arthritis patients. Clin Rheumatol. 2017;36:1897–1902.
Hyndman D., Liu S., Miner J.N. Urate handling in the human body. Curr Rheumatol Rep. 2016;18:34–38.
Jamnik J., Rehman S., Blanco Mejia S. et al. Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ Open. 2016;6:131–139.
Johnson R.J., Choi H.K., Yeo A.E., Lipsky P.E. Pegloticase treatment significantly decreases blood pressure in patients with chronic gout. Hypertension. 2019;74:95–101.
Kawamura Y., Nakaoka H., Nakayama A. et al. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Ann Rheum Dis.2019;78:1430–1437.
Klauser A.S., Halpern E.J., Strobl S. et al. Dual-energy computed tomography detection of cardiovascular monosodium urate deposits in patients with gout. JAMA Cardiol. 2019;4(10):1019–1028. DOI: 10.1001/jamacardio.2019.3201.
Khan A.A., Quinn T.J., Hewitt J. et al. Serum uric acid level and association with cognitive impairment and dementia: systematic review and metaanalysis. Age. 2016;38:16.
Kimura K., Osova T., Uchida S., Inaba M. et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis. 2018;72(6):798–810.
Latourte A., Soumare A., Bardin T. et al. Uric acid and incident dementia over 12 years of follow-up: a population-based cohort study. Ann Rheum Dis. 2018;77:328–335.
Lee J.W., Lee K.H. Comparison of renoprotective effects of febuxostat and allopurinol in hyperuricemic patients with chronic kidney disease. Int Urol Nephrol. 2019;51:467–473.
Levy G., Shi J.M., Cheetham T.C., Rashid N. Urate lowering therapy in moderate to severe chronic kidney disease. Perm J. 2018;22:17–142.
Li J., Badve S., Zhou Z.L., Oh R. et al. The effects of canagliflozin on uric acid and gout in patients with type 2 diabetes in the CANVAS program. poster presentation at the 79th scientific session of the American Diabetes Association. June 711. 2019;1(4):e220–e228. DOI:10.1016/S2665-9913(19)30078-5.
Li P., Zhang L., Zhang M, Zhou C. et al. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: a mechanism for uric acidinduced endothelial dysfunction. Int J Mol Med. 2016;37:989–997.
Liu D., Yun Y., Yang D. et al. What is the biological function of uric acid? an antioxidant for neural protection or a biomarker for cell death. Dis Markers. 2019;4081962.
Liu C.W., Chang W.C., Lee C.C. et al. Hyperuricemia Is associated with a higher prevalence of metabolic syndrome in military individuals. Mil Med. 2018;83:391–395.
Liu C.W., Chen K.H, Tseng C.K. et al. The dose-response effects of uric acid on the prevalence of metabolic syndrome and electrocardiographic left ventricular hypertrophy in healthy individuals. Nutr Metab Cardiovasc Dis. 2019;29:30–38.
Luo S.F., Chin C.Y., Ho L.J. et al Monosodium urate crystals induced ICAM-1 expression and cell-cell adhesion in renal mesangial cells: implications for the pathogenesis of gouty nephropathy. J Microbiol Immunol Infect. 2018;7:1684–1182.
Maiuolo J., Oppedisano F., Gratteri S., Muscoli C., Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.
Major T.J., Topless R.K., Dalbeth N., Merriman T.R. Evaluation of the diet wide contribution to serum urate levels: meta analysis of population based cohorts. BMJ. 2018;363:39-51.
Major T.J., Dalbeth N., Stahl E.A., Merriman T.R. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2018;1:341–353.
Mulay S.R., Desai J., Kumar S.V. et al. Cytotoxicity of crystals involves RIPK3-MLKLmediated necroptosis. Nat Commun. 2016;7:10274.
Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018;484:150–163.
Pagidipati N.J., Clare R.M., Keenan R.T. et al. Association of gout with long-term cardiovascular outcomes among patients with obstructive coronary artery diseaseю J Am Heart Assoc. 2018;7:16.
Siqueira J.H., Mill J.G., Velasquez-Melendez G. et al. Sugar-sweetened soft drinks and fructose consumption are associated with hyperuricemia: cross-sectional analysis from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients. 2018;10:981.
Singh J.A., Cleveland J.D. Comparative effectiveness of allopurinol versus febuxostat for preventing incident dementia in older adults: a propensity-matched analysis. Arthritis Res Ther. 2018;20(1):167.
Sumiyoshi H., Ohyama Y., Imai K. et al. Association of uric acid with incident metabolic syndrome in a Japanese general population. Int Heart J. 2019;60:830–835.
So A.K., Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13:639–647.
Schauer C., Janko C., Munoz L.E., Zhao Y. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–517.
Tai V., Merriman T.R., Dalbeth N. Genetic advances in gout: potential applications in clinical practice. Curr Opin Rheumatol. 2019;31(2):144–151.
Tana C., Ticinesi A., Prati B. et al. Uric acid and cognitive function in older individuals. Nutrients. 2018;10(8):975. DOI: 10.3390/nu10080975
Tiku A., Badvesv, Johnson D.W. Urate-lowering therapy for preventing kidney disease progression: are we there yet. Am J Kidney Dis. 2018;72(6):776–778.
Terkeltaub R. What makes gouty inflammation so variable? BMC Med. 2017;15:158.
Wong K., Briddon S.J., Holliday N.D., Kerr I.D. Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle imaging techniques. Biochim Biophys Acta. 2016;1863:19–29.
Zaidi F., Narang R.K., Phipps-Green A. et al. Systematic genetic analysis of early-onset gout: ABCG2 is the only associated locus. Rheumatology. 2020:685–689.