ВЛИЯНИЕ ФАКТОРА НЕКРОЗА ОПУХОЛЕЙ α НА СЕРДЕЧНО-СОСУДИСТУЮ СИСТЕМУ: МЕХАНИЗМЫ ДЕЙСТВИЯ И ТЕРАПЕВТИЧЕСКИЕ ПОДХОДЫ
Аннотация
Сердечно-сосудистые заболевания (ССЗ) занимают первое место в структуре смертности и инвалидизации. Важную роль в патогенезе ССЗ играет хроническое воспаление низкой степени активности. В обзоре рассматривается роль фактора некроза опухолей α (ФНОα) в развитии воспалительного процесса и течении ССЗ. ФНОα, являясь ключевым медиатором воспаления, активно участвует в патогенезе различных ССЗ, таких как атеросклероз, гипертоническая болезнь, хроническая сердечная недостаточность. Представлены данные о механизмах действия ФНОα, а также об эффективности анти-ФНОα препаратов в клинической и экспериментальной кардиологии. Отдельно рассмотрена возможность использования управляемого изменения кишечной микробиоты как метода воздействия на уровень ФНОα. Систематизированы данные по влиянию ФНОα на миокард в условиях хронического воспаления.
Литература
Aravindhan V., Madhumitha H. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses. J Diabetes Res. 2016;2016:6264149. DOI: 10.1155/2016/6264149.
Scheithauer TPM., Rampanelli E., Nieuwdorp M., Vallance B.A., Verchere C.B., van Raalte D.H., Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol. 2020;11:571731. DOI: 10.3389/fimmu.2020.571731.
Wiemann B., Starnes C.O. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64(3):529–564. DOI: 10.1016/0163-7258(94)90023-x.
Carswell E.A., Old L.J., Kassel R.L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975;72(9):3666–3670. DOI: 10.1073/pnas.72.9.3666.
Kawakami M., Cerami A. Studies of endotoxin-induced decrease in lipoprotein lipase activity. J Exp Med. 1981;154(3):631–639. DOI: 10.1084/jem.154.3.631.
Beutler B., Mahoney J., Le Trang N., Pekala P., Cerami A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med. 1985;161(5):984–995. DOI: 10.1084/jem.161.5.984.
Beutler B., Greenwald D., Hulmes J.D., Chang M., Pan Y.C., Mathison J., Ulevitch R., Cerami A. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature. 1985;316(6028):552–554. DOI: 10.1038/316552a0.
Pennica D., Hayflick J.S., Bringman T.S., Palladino M.A., Goeddel D.V. Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc Natl Acad Sci U S A. 1985;82(18):6060–6064. DOI: 10.1073/pnas.82.18.6060.
Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9(4):271–285. DOI: 10.1038/nri2526.
Ousman S.S., David S. MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J Neurosci. 2001;21(13):4649–4656. DOI: 10.1523/JNEUROSCI.21-13-04649.2001.
Lejeune F.J. Clinical use of TNF revisited: improving penetration of anti-cancer agents by increasing vascular permeability. J Clin Invest. 2002;110(4):433–435. DOI: 10.1172/JCI16493.
Ferreira S.H., Lorenzetti B.B., Cunha F.Q., Poole S. Bradykinin release of TNF-alpha plays a key role in the development of inflammatory hyperalgesia. Agents Actions. 1993;38:7–9. DOI: 10.1007/BF01991120.
Chu W.M. Tumor necrosis factor. Cancer Lett. 2013;328(2):222–225. DOI: 10.1016/j.canlet.2012.10.014.
Croft M., Duan W., Choi H., Eun S.Y., Madireddi S., Mehta A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. 2012;33(3):144–152. DOI: 10.1016/j.it.2011.10.004.
Vinay D.S., Kwon B.S. The tumour necrosis factor/TNF receptor superfamily: therapeutic targets in autoimmune diseases. Clin Exp Immunol. 2011;164(2):145–157. DOI: 10.1111/j.1365-2249.2011.04375.x.
Vinay D.S., Kwon B.S. Genes, Transcripts and Proteins of CD137 Receptor and Ligand. In: Chen, L. (eds) CD137 Pathway: Immunology and Diseases. Springer, Boston, MA. 2006. DOI: 10.1007/0-387-32829-7_1.
Grivennikov S.I., Tumanov A.V., Liepinsh D.J., Kruglov A.A., Marakusha B.I., Shakhov A.N., Murakami T., Drutskaya L.N., Förster I., Clausen B.E., Tessarollo L., Ryffel B., Kuprash D.V., Nedospasov S.A. Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: protective and deleterious effects. Immunity. 2005;22(1):93–104. DOI: 10.1016/j.immuni.2004.11.016.
Pennica D., Nedwin G.E., Hayflick J.S., Seeburg P.H., Derynck R., Palladino M.A., Kohr W.J., Aggarwal B.B., Goeddel D.V. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312(5996):724–729. DOI: 10.1038/312724a0.
Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., Castner B.J., Stocking K.L., Reddy P., Srinivasan S., Nelson N., Boiani N., Schooley K.A., Gerhart M., Davis R., Fitzner J.N., Johnson R.S., Paxton R.J., March C.J., Cerretti D.P. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385(6618):729–733. DOI: 10.1038/385729a0.
Faustman D., Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov. 2010;9(6):482–493. DOI: 10.1038/nrd3030.
Carpentier I., Coornaert B., Beyaert R. Function and regulation of tumor necrosis factor receptor type 2. Curr Med Chem. 2004;11(16):2205–2212. DOI: 10.2174/0929867043364694.
Grell M., Douni E., Wajant H., Löhden M., Clauss M., Maxeiner B., Georgopoulos S., Lesslauer W., Kollias G., Pfizenmaier K., Scheurich P. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995;83(5):793–802. DOI: 10.1016/0092-8674(95)90192-2.
Eissner G., Kolch W., Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 2004;15(5):353–366. DOI: 10.1016/j.cytogfr.2004.03.011.
Tartaglia L.A., Weber R.F., Figari I.S., Reynolds C., Palladino MA. Jr., Goeddel D.V. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA. 1991;88(20):9292–9296. DOI: 10.1073/pnas.88.20.9292.
Hsu H., Xiong J., Goeddel D.V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81(4):495–504. DOI: 10.1016/0092-8674(95)90070-5.
Rothe M., Sarma V., Dixit V.M., Goeddel D.V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995;269(5229):1424–1427. DOI: 10.1126/science.7544915.
Pimentel-Muiños F.X., Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity. 1999;11(6):783–793. DOI: 10.1016/s1074-7613(00)80152-1.
Bartekova M., Radosinska J., Jelemensky M., Dhalla N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev. 2018;23(5):733–758. DOI: 10.1007/s10741-018-9716-x.
Urschel K., Cicha I. TNF-α in the cardiovascular system: From physiology to therapy. International Journal of Interferon, Cytokine and Mediator Research. 2015. DOI: 10.2147/IJICMR.S64894.
Higuchi Y., Otsu K., Nishida K., Hirotani S., Nakayama H., Yamaguchi O., Matsumura Y., Ueno H., Tada M., Hori M. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2002;34(2):233–240. DOI: 10.1006/jmcc.2001.1505.
Prabhu S.D., Frangogiannis N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res. 2016;119(1):91–112. DOI: 10.1161/CIRCRESAHA.116.303577.
Hotamisligil G.S. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245(6):621–625. DOI: 10.1046/j.1365-2796.1999.00490.x.
Gulick T., Chung M.K., Pieper S.J., Lange L.G., Schreiner G.F. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA. 1989;86(17):6753–6757. DOI: 10.1073/pnas.86.17.6753.
Müller-Werdan U., Schumann H., Fuchs R., Reithmann C., Loppnow H., Koch S., Zimny-Arndt U., He C., Darmer D., Jungblut P., Stadler J., Holtz J., Werdan K. Tumor necrosis factor alpha (TNF alpha) is cardiodepressant in pathophysiologically relevant concentrations without inducing inducible nitric oxide-(NO)-synthase (iNOS) or triggering serious cytotoxicity. J Mol Cell Cardiol. 1997;29(11):2915–2923. DOI: 10.1006/jmcc.1997.0526.
Fuster J.J., Ouchi N., Gokce N., Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res. 2016;118(11):1786–1807. DOI: 10.1161/CIRCRESAHA.115.306885.
Pfisterer M., Buser P., Rickli H., Gutmann M., Erne P., Rickenbacher P., Vuillomenet A., Jeker U., Dubach P., Beer H., Yoon S.I., Suter T., Osterhues H.H., Schieber M.M., Hilti P., Schindler R., Brunner-La Rocca H.P. TIME-CHF Investigators. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009;301(4):383–392. DOI: 10.1001/jama.2009.2.
Rauchhaus M., Doehner W., Francis D.P., Davos C., Kemp M., Liebenthal C., Niebauer J., Hooper J., Volk H.D., Coats A.J., Anker S.D. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060–3067. DOI: 10.1161/01.cir.102.25.3060.
Jastrzębska M., Czok M.E., Guzik P. Autoimmune diseases, their pharmacological treatment and the cardiovascular system. Cardiol J. 2013;20(6):569–576. DOI: 10.5603/CJ.2013.0156.
Pischon T., Hu F.B., Rexrode K.M., Girman C.J., Manson J.E., Rimm E.B. Inflammation, the metabolic syndrome, and risk of coronary heart disease in women and men. Atherosclerosis. 2008;197(1):392–399. DOI: 10.1016/j.atherosclerosis.2007.06.022.
Yago T., Petrich B.G., Zhang N., Liu Z., Shao B., Ginsberg M.H., McEver R.P. Blocking neutrophil integrin activation prevents ischemia-reperfusion injury. J Exp Med. 2015;212(8):1267–1281. DOI: 10.1084/jem.20142358.
Zhang Y., Yuan D., Yao W., Zhu Q., Liu Y., Huang F., Feng J., Chen X., Huang Y., Chi X., Hei Z. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation. Oxid Med Cell Longev. 2016;2016:3919627. DOI: 10.1155/2016/3919627.
Maehara N., Taniguchi K., Okuno A., Ando H., Hirota A., Li Z., Wang C.T., Arai S., Miyazaki T. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep. 2021;36(11):109693. DOI: 10.1016/j.celrep.2021.109693.
Zindel J., Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol. 2020;15:493–518. DOI: 10.1146/annurev-pathmechdis-012419-032847.
Serhan C.N. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011;25(5):1441–1448. DOI: 10.1096/fj.11-0502ufm.
Halade G.V., Kain V., Ingle K.A., Prabhu S.D. Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. Am J Physiol Heart Circ Physiol. 2017;313(1):H89–H102. DOI: 10.1152/ajpheart.00040.2017.
Kain V., Liu F., Kozlovskaya V., Ingle K.A., Bolisetty S., Agarwal A., Khedkar S., Prabhu S.D., Kharlampieva E., Halade G.V. Resolution Agonist 15-epi-Lipoxin A4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Sci Rep. 2017;7(1):9999. DOI: 10.1038/s41598-017-10441-8.
Sharma M., Schlegel M.P., Afonso M.S., Brown E.J., Rahman K., Weinstock A., Sansbury B.E., Corr E.M., van Solingen C., Koelwyn G.J., Shanley L.C., Beckett L., Peled D., Lafaille J.J., Spite M., Loke P., Fisher E.A., Moore K.J. Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circ Res. 2020;127(3):335–353. DOI: 10.1161/CIRCRESAHA.119.316461.
Ortega-Gómez A., Perretti M., Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med. 2013;5(5):661–674. DOI: 10.1002/emmm.201202382.
Blume K.E., Soeroes S., Keppeler H., Stevanovic S., Kretschmer D., Rautenberg M., Wesselborg S., Lauber K. Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic “find-me” signal. J Immunol. 2012;188(1):135–145. DOI: 10.4049/jimmunol.1004073.
Gerlach B.D., Marinello M., Heinz J., Rymut N., Sansbury B.E., Riley C.O., Sadhu S., Hosseini Z., Kojima Y., Tang D.D., Leeper N.J., Spite M., Barroso M., Rayner K.J., Fredman G. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 2020;27(2):525–539. DOI: 10.1038/s41418-019-0370-1.
Maskrey B.H., Megson I.L., Whitfield P.D., Rossi A.G. Mechanisms of resolution of inflammation: a focus on cardiovascular disease. Arterioscler Thromb Vasc Biol. 2011;31(5):1001–1006. DOI: 10.1161/ATVBAHA.110.213850.
Halade G.V., Kain V., Black L.M., Prabhu S.D., Ingle K.A. Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging (Albany NY). 2016;8(11):2611–2634. DOI: 10.18632/aging.101077.
Lopez E.F., Kabarowski J.H., Ingle K.A., Kain V., Barnes S., Crossman D.K., Lindsey M.L., Halade G.V. Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. Am J Physiol Heart Circ Physiol. 2015;308(4):H269–80. DOI: 10.1152/ajpheart.00604.2014.
Malaviya A.N., Mehra N.K. A fascinating story of the discovery & development of biologicals for use in clinical medicine. Indian J Med Res. 2018;148(3):263–278. DOI: 10.4103/ijmr.IJMR_1471_18.
Zidi I., Mestiri S., Bartegi A., Amor N.B. TNF-alpha and its inhibitors in cancer. Med Oncol. 2010;27(2):185–198. DOI: 10.1007/s12032-009-9190-3.
Kornbluth A. Infliximab approved for use in Crohn’s disease: a report on the FDA GI Advisory Committee conference. Inflamm Bowel Dis. 1998;4(4):328–329. DOI: 10.1002/ibd.3780040415.
St Clair E.W., van der Heijde D.M., Smolen J.S., Maini R.N., Bathon J.M., Emery P., Keystone E., Schiff M., Kalden J.R., Wang B., Dewoody K., Weiss R., Baker D. Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset Study Group. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 2004;50(11):3432–3443. DOI: 10.1002/art.20568.
Bratcher J.M., Korelitz B.I. Toxicity of infliximab in the course of treatment of Crohn’s
disease. Expert Opin Drug Saf. 2006;5(1):9–16. DOI: 10.1517/14740338.5.1.9.
Goffe B., Cather J.C. Etanercept: An overview. J Am Acad Dermatol. 2003;49(2 Suppl):S105–11. DOI: 10.1016/mjd.2003.554.
Zhao S., Mysler E., Moots R.J. Etanercept for the treatment of rheumatoid arthritis. Immunotherapy. 2018;10(6):433–445. DOI: 10.2217/imt-2017-0155.
Horiuchi T., Mitoma H., Harashima S., Tsukamoto H., Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford). 2010;49(7):1215–1228. DOI: 10.1093/rheumatology/keq031.
Koroleva E.P., Fu Y.X., Tumanov A.V. Lymphotoxin in physiology of lymphoid tissues — Implication for antiviral defense. Cytokine. 2018;101:39–47. DOI: 10.1016/j.cyto.2016.08.018.
Goffe B. Etanercept (Enbrel) — an update. Skin Therapy Lett. 2004;9(10):1–4,9.
Levin A.D., Wildenberg M.E., van den Brink G.R. Mechanism of Action of Anti-TNF Therapy in Inflammatory Bowel Disease. J Crohns Colitis. 2016;10(8):989–97. DOI: 10.1093/ecco-jcc/jjw053.
Wallis R.S. Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis. 2008;8(10):601–611. DOI: 10.1016/S1473-3099(08)70227-5.
Shealy D.J., Cai A., Staquet K., Baker A., Lacy E.R., Johns L., Vafa O., Gunn G. 3rd, Tam S., Sague S., Wang D., Brigham-Burke M., Dalmonte P., Emmell E., Pikounis B., Bugelski P.J., Zhou H., Scallon B.J., Giles-Komar J. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α. MAbs. 2010;2(4):428–439. DOI: 10.4161/mabs.12304.
Oldfield V., Plosker G.L. Golimumab: in the treatment of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. BioDrugs. 2009;23(2):125–135. DOI: 10.2165/00063030-200923020-00005.
Nelson A.L., Dhimolea E., Reichert J.M. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774. DOI: 10.1038/nrd3229.
Lang L. FDA approves Cimzia to treat Crohn’s disease. Gastroenterology. 2008;134(7):1819. DOI: 10.1053/j.gastro.2008.04.034.
Palframan R., Airey M., Moore A., Vugler A., Nesbitt A. Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis. J Immunol Methods. 2009;348(1-2):36–41. DOI: 10.1016/j.jim.2009.06.009.
Nesbitt A., Fossati G., Bergin M., Stephens P., Stephens S., Foulkes R., Brown D., Robinson M., Bourne T. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis. 2007;13(11):1323–32. DOI: 10.1002/ibd.20225.
Lis K., Kuzawińska O., Bałkowiec-Iskra E. Tumor necrosis factor inhibitors — state of knowledge. Arch Med Sci. 2014;10(6):1175–1185. DOI: 10.5114/aoms.2014.47827.
Takeuchi T. Structural, nonclinical, and clinical features of ozoralizumab: A novel tumour necrosis factor inhibitor. Mod Rheumatol. 2023;33(6):1059–1067. DOI: 10.1093/mr/road038.
Canault M., Peiretti F., Mueller C., Kopp F., Morange P., Rihs S., Portugal H., Juhan-Vague I., Nalbone G. Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus. Atherosclerosis. 2004;172(2):211–218. DOI: 10.1016/j.atherosclerosis.2003.10.004.
Canault M., Peiretti F., Poggi M., Mueller C., Kopp F., Bonardo B., Bastelica D., Nicolay A., Alessi M.C., Nalbone G. Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha. J Pathol. 2008;214(5):574–583. DOI: 10.1002/path.2305.
Brånén L., Hovgaard L., Nitulescu M., Bengtsson E., Nilsson J., Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2004;24(11):2137–2142. DOI: 10.1161/01.ATV.0000143933.20616.1b.
Ohta H., Wada H., Niwa T., Kirii H., Iwamoto N., Fujii H., Saito K., Sekikawa K., Seishima M. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis. 2005;180(1):11–17. DOI: 10.1016/j.atherosclerosis.2004.11.016.
Zhou Z., Lauer M.A., Wang K., Forudi F., Zhou X., Song Xy., Solowski N., Kapadia S.R., Nakada M.T., Topol E.J., Lincoff A.M. Effect of anti-tumor necrosis factor-alpha polyclonal antibody on restenosis after balloon angioplasty in a rabbit atherosclerotic model. Atherosclerosis. 2002;161(1):153–159. DOI: 10.1016/s0021-9150(01)00640-2.
Jiang Y., Zhang Q., Ye E.A., Steinle J.J. Etanercept restores normal insulin signal transduction in β2-adrenergic receptor knockout mice. J Neuroinflammation. 2014;11:137. DOI: 10.1186/s12974-014-0137-z.
Toufektsian M.C., Robbez-Masson V., Sanou D., Jouan M.G., Ormezzano O., de Leiris J., Boucher F. A single intravenous sTNFR-Fc administration at the time of reperfusion limits infarct size--implications in reperfusion strategies in man. Cardiovasc Drugs Ther. 2008;22(6):437–442. DOI: 10.1007/s10557-008-6130-y.
Bozkurt B., Kribbs S.B., Clubb FJ. Jr., Michael L.H., Didenko V.V., Hornsby P.J., Seta Y., Oral H., Spinale F.G., Mann D.L. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation. 1998;97(14):1382–1391. DOI: 10.1161/01.cir.97.14.1382.
Li X., Moody M.R., Engel D., Walker S., Clubb FJ. Jr., Sivasubramanian N., Mann D.L., Reid M.B. Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation. 2000;102(14):1690–1696. DOI: 10.1161/01.cir.102.14.1690.
Moe G.W., Marin-Garcia J., Konig A., Goldenthal M., Lu X., Feng Q. In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol. 2004;287(4):H1813–20. DOI: 10.1152/ajpheart.00036.2004.
Iversen P.O., Nicolaysen G., Sioud M. DNA enzyme targeting TNF-alpha mRNA improves hemodynamic performance in rats with postinfarction heart failure. Am J Physiol Heart Circ Physiol. 2001;281(5):H2211–7. DOI: 10.1152/ajpheart.2001.281.5.H2211.
Tang X.L., Liu J.X., Dong W., Li P., Li L., Lin C.R., Zheng Y.Q., Cong W.H., Hou J.C. Cardioprotective effect of protocatechuic acid on myocardial ischemia/reperfusion injury. J Pharmacol Sci. 2014;125(2):176–183. DOI: 10.1254/jphs.13247fp.
Mann D.L., McMurray J.J., Packer M., Swedberg K., Borer J.S., Colucci W.S., Djian J., Drexler H., Feldman A., Kober L., Krum H., Liu P., Nieminen M., Tavazzi L., van Veldhuisen D.J., Waldenstrom A., Warren M., Westheim A., Zannad F., Fleming T. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594–1602. DOI: 10.1161/01.CIR.0000124490.27666.B2.
Chung E.S., Packer M., Lo K.H., Fasanmade A.A., Willerson J.T. Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–3140. DOI: 10.1161/01.CIR.0000077913.60364.D2.
Mann D.L., Bozkurt B., Torre-Amione G., Soran O.Z., Sivasubramanian N. Effect of the soluble TNF-antagonist etanercept on tumor necrosis factor bioactivity and stability. Clin Transl Sci. 2008;1(2):142–145. DOI: 10.1111/j.1752-8062.2008.00013.x.
Насонов Е.Л., Козлов Р.С., Якушин С.Б. Инфекционные осложнения терапии блокаторами фактора некроза опухоли: предупрежден — значит вооружен. Клиническая микробиология и антимикробная химиотерапия. 2006; 8(4):314–324.
Nasonov E.L., Kozlov R.S., Yakushin S.B. Infektsionnye oslozhneniya terapii blokatorami faktora nekroza opukholi: preduprezhden — znachit vooruzhen. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2006;8(4):314–324. (In Russian).
Борисов С.Е., Лукина Г.В., Слогоцкая Л.В., Гунтупова Л.Д., Куликовская Н.В. Скрининг и мониторинг туберкулезной инфекции у ревматологических больных, получающих генно-инженерные биологические препараты. Туберкулез и болезни легких. 2011;88(6):42–50.
Borisov S.E., Lukina G.V., Slogotskaya L.V., Kochetkov Ya.A., Guntupova L.D., Kulikovskaya N.V. Skrining i monitoring tuberkuleznoy infektsii u revmatologicheskikh bolnykh, poluchayushchikh genno-inzhenernye biologicheskie preparaty. Tuberkulez i bolezni legkikh. 2011;88(6):42–50. (In Russian).
Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516–1526. DOI: 10.1136/gutjnl-2019-318427.
Odenwald M.A., Turner J.R. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol. 2017;14(1):9–21. DOI: 10.1038/nrgastro.2016.169.
Li X.Y., He C., Zhu Y., Lu N.H. Role of gut microbiota on intestinal barrier function in acute pancreatitis. World J Gastroenterol. 2020;26(18):2187–2193. DOI: 10.3748/wjg.v26.i18.2187.
Буровенко И.Ю., Борщев Ю.Ю., Минасян С.М., Процак Е.С., Шептицкий В.А., Галагудза М.М. Изучение всасывания моносахаридов в изолированном кишечнике и устойчивости миокарда к ишемии-реперфузии у крыс после введения антимикробных препаратов. Экспериментальная и клиническая гастроэнтерология. 2019;163(3):43–50. DOI: 10.31146/1682-8658-ecg-163-3-43-50.
Burovenko I.Yu., Borshchev Yu.Yu., Minasian S.M., Protsak E.S., Sheptitski V.A., Galagudza M.M. The study of absorption of monosaccharides in the isolated intestine and resistance of the myocardium to ischemia-reperfusion in rats after administration of antimicrobial agents. Eksperimental’naya i klinicheskaya gastroenterologiya. 2019;163(3):43–50. DOI: 10.31146/1682-8658-ecg-163-3-43-50. (In Russian).
Борщев Ю.Ю., Сонин Д.Л., Минасян С.М., Процак Е.С., Семенова Н.Ю., Галагудза М.М. Роль кишечной микробиоты в развитии артериальной гипертензии: механизмы и терапевтические цели. Артериальная гипертензия. 2024;30(2):159–173. DOI: 10.18705/1607-419X-2024-2359.
Borshchev Yu.Yu., Sonin D.L., Minasian S.M., Protsak E.S., Semenova N.Yu., Galagudza M.M. The role of intestinal microbiota in the development of arterial hypertension: mechanisms and therapeutic targets. Arterial'naya gipertenziya. 2024;30(2):159–173. DOI: 10.18705/1607-419X-2024-2359. (In Russian).
Mu Q., Kirby J., Reilly C.M., Luo X.M. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol. 2017;8:598. DOI: 10.3389/fimmu.2017.00598.
Régnier M., Van Hul M., Knauf C., Cani P.D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J Endocrinol. 2021;248(2):R67–R82. DOI: 10.1530/JOE-20-0473.
Chopyk D.M., Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology. 2020;159(3):849–863. DOI: 10.1053/j.gastro.2020.04.077.
Борщев Ю.Ю., Буровенко И.Ю., Карасева А.Б., Минасян С.М., Процак Е.С., Борщев В.Ю., Семенова Н.Ю., Борщева О.В., Суворов А.Н., Галагудза М.М. Влияние Качественный состав высокожировой диеты у крыс с синдромом системного воспалительного ответа на устойчивость миокарда к ишемически-реперфузионному повреждению и уровень цитокинов. Медицинская иммунология (Россия). 2021;23(5):1089–1104. DOI: 10.15789/1563-0625-EOT-2166.
Borschev Yu.Yu., Burovenko I.Yu., Karaseva A.B., Minasyan S.M., Protsak E.S., Borschev V.Yu., Semenova N.Yu., Borshcheva O.V., Suvorov A.N., Galagudza M.M. Effect of the qualitative composition of a high-fat diet in rats with systemic inflammatory response syndrome upon myocardial resistance to ischemic-reperfusion injury and cytokine levels. Meditsinskaya immunologiya (Rossiya). 2021;23(5):1089–1104. DOI: 10.15789/1563-0625-EOT-2166. (In Russian).
Borshchev Y.Y., Burovenko I.Y., Karaseva A.B., Minasian S.M., Protsak E.S., Borshchev V.Y., Semenova N.Y., Borshcheva O.V., Suvorov A.N., Galagudza M.M. Probiotic Therapy with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis Results in Infarct Size Limitation in Rats with Obesity and Chemically Induced Colitis. Microorganisms. 2022;10(11):2293. DOI: 10.3390/microorganisms10112293.
Lamprecht M., Bogner S., Schippinger G., Steinbauer K., Fankhauser F., Hallstroem S., Schuetz B., Greilberger J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012;9(1):45. DOI: 10.1186/1550-2783-9-45.
Soldi S., Tagliacarne S.C., Valsecchi C., Perna S., Rondanelli M., Ziviani L., Milleri S., Annoni A., Castellazzi A. Effect of a multistrain probiotic (Lactoflorene® Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms. Neurobiol Stress. 2018;10:100138. DOI: 10.1016/j.ynstr.2018.11.001.
Toejing P., Khampithum N., Sirilun S., Chaiyasut C., Lailerd N. Influence of Lactobacillus paracasei HII01 Supplementation on Glycemia and Inflammatory Biomarkers in Type 2 Diabetes: A Randomized Clinical Trial. Foods. 2021;10(7):1455. DOI: 10.3390/foods10071455.
Wang C.H., Yen H.R., Lu W.L., Ho H.H., Lin W.Y., Kuo Y.W., Huang Y.Y., Tsai S.Y., Lin H.C. Adjuvant Probiotics of Lactobacillus salivarius subsp. Salicinius AP-32, L. johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 Attenuate Glycemic Levels and Inflammatory Cytokines in Patients With Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne). 2022;13:754401. DOI: 10.3389/fendo.2022.754401.