ОСОБЕННОСТИ ПАТОГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ РАЗВИТИЯ АТЕРОСКЛЕРОЗА И СТАРЕНИЯ

  • Аршед Ахмад Кучай Центр спасения конечностей, СПб ГБУЗ Городская больница № 14. 198099, г. Санкт-Петербург, ул. Косинова, д. 19 https://orcid.org/0000-0002-7974-9369
  • Александр Николаевич Липин Центр спасения конечностей, СПб ГБУЗ Городская больница № 14. 198099, г. Санкт-Петербург, ул. Косинова, д. 19
  • Кирилл Ленарович Козлов Военно-медицинская академия им. С.М. Кирова. 194044, г. Санкт-Петербург, ул. Академика Лебедева, 6
  • Никита Николаевич Груздев Центр спасения конечностей, СПб ГБУЗ Городская больница № 14. 198099, г. Санкт-Петербург, ул. Косинова, д. 19
  • Гузель Шамиловна Кучай ИПКА Лабораториз. 198095, г. Санкт-Петербург, ул. Ивана Черных, д. 2
  • Александр Александрович Шугаров Курский государственный медицинский университет. 305000, г. Курск, ул. Карла Маркса, д. 3
Ключевые слова: атеросклероз, эндотелиальная дисфункция, микробиота, генетика, воспаление, окислительный стресс, старение

Аннотация

Атеросклероз относят к болезням старения, так как повышение возраста является независимым фактором риска его развития. Данный процесс связан с преждевременным биологическим старением, поскольку в атеросклеротических бляшках выявляются признаки снижения пролиферации клеток, апоптоза, повышенного повреждения ДНК, эпигенетических модификаций, укорочения и дисфункции теломер. Атеросклероз является хроническим воспалительным заболеванием внутренней стенки крупных и средних артерий. Это основная причина развития сердечно-сосудистых и цереброваскулярных заболеваний. Патоморфологически атеросклероз представляет собой хроническое воспаление артерий, вторичное по отношению к длительному воздействию окислительного стресса, в процессах которого участвуют многочисленные типы клеток и медиаторы. Окисленные липиды, образующиеся из липопротеидов низкой плотности, способствуют развитию и прогрессированию атеросклеротических бляшек за счет выработки воспалительных цитокинов. Диета и пищевые привычки являются основными факторами, способствующими развитию и прогрессированию атеросклеротических заболеваний. Генетика и эпигенетика также оказывают значимое влияние на развитие и прогрессирование атеросклероза. В перспективе терапевтические подходы могут быть направлены на патогенетические медиаторы атеросклероза на молекулярном уровне.

Литература

Lorkowski S., Cullen P. Atherosclerosis: pathogenesis, clinical features and treatment. Encycl Life Sci. 2007;2007:1–11.

Aziz M., Yadav K. Pathogenesis of atherosclerosis a review. Med Clin Rev. 2016;2(3):1–6.

Helkin A., Stein J.J., Lin S. et al. Dyslipidemia part 1 — review of lipid metabolism and vascular cell physiology. Vasc Endovascular Surg. 2016;50(2):107–118.

Eckardstein A. Atherosclerosis: diet and drugs. The American Journal of the Medical Sciences. Vol. 258. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005.

Nus M., Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for the clinic. Expert Rev Clin Immunol. 2016;12(11):1217–1237.

Tulenko T.N., Sumner A.E. The physiology of lipoproteins. J Nucl Cardiol. 2002;9(6):638–649.

Cockburn A., Barraco R.A., Reyman T.A. et al. Autopsy of an Egyptian mummy. Science. 1975;187(4182):1155LP–1160.

Ruffer M.A. On arterial lesions found in Egyptian mummies (1580 B.C.—525 A.D.). J Pathol Bacteriol. 1911;15(4):453–462.

Fishbein M.C., Fishbein G.A. Arteriosclerosis: facts and fancy. Cardiovasc Pathol. 2015;24(6):335–342.

Hansson G.K. Inflammation, atherosclerosis, and coro­nary artery disease. N Engl J Med. 2005;1685–1695. DOI: 10.1056/NEJMra043430.

Di Raimondo T.A., Di Sciacca D., Pecoraro R. et al. Arterial stiffness and ischemic stroke in subjects with and without metabolic syndrome. Atherosclerosis. 2012;225(1):216–219.

WHO. 2017. Cardiovascular diseases (2017). World Health Organization. [cited 2017 Jul 12]. Available at: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed: 11.01.2025).

Yusuf S., Reddy S., Ôunpuu S. et al. Global burden of cardiovascular diseases, part I. Circulation. 2001;27:2746–2753.

Lara-Guzmán O.J., Gil-Izquierdo Á., Medina S. et al. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol. 2018;15(2017):1–11.

Liu W., Yin Y., Zhou Z. et al. OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflammation Res. 2013;63(1):33–43.

Lusis A.J. Genetics of Atherosclerosis. Trends Genet. 2012;28(6):267–275.

Reschen M.E., Lin D., Chalisey A. et al. Genetic and environmental risk factors for atherosclerosis regulate transcription of phosphatase and actin regula­ting gene PHACTR1. Atherosclerosis. 2016;250:95–105.

Patel K., Strong A., Tohyama J. et al. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res. 2015;116(5):789–796.

Sakakura K., Nakano M., Otsuka F. et al. Pathophy­siology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22(6):399–411.

Zeller I., Srivastava S. Macrophage functions in athe­rosclerosis. Circ Res. 2014;115(12):e83–e85.

Randolph G.J. Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res. 2014;114(11):1757–1771.

Hai Z., Zuo W. Aberrant DNA methylation in the pathogenesis of atherosclerosis. Clin Chim Acta. 2016;456:69–74.

Afanas’ev I. Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis. 2015;6(3):216–227.

O’Hagan H.M., Wang W., Sen S. et al. Oxidative da­mage targets complexes containing DNA methyltransferases, SIRT1 and polycomb members to promoter CpG Islands. Cancer Cell. 2011;20(5):1–23.

Weitzman S.A., Turk P.W., Milkowski D.H. et al. Free radical adducts induce alterations in DNA cytosine methy­lation. Proc Natl Acad Sci U S A. 1994;91(4):1261–1264.

Greißel A., Culmes M., Burgkart R. et al. Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol. 2016;25(2):79–86.

Allahverdian S., Chehroudi A.C., McManus B.M., Abraham T., Francis G.A. Contribution of Intimal Smooth Muscle Cells to Cholesterol Accumulation and Macrophage-Like Cells in Human Atherosclerosis. Circulation. 2014;129:1551–1559. DOI: 10.1161/CIRCULATIONAHA.113.005015.

Verma S., Anderson T.J. Fundamentals of Endothelial Function for the Clinical Cardiologist. Circulation. 2002;105:546–549. DOI: 10.1161/hc0502.104540.

Gimbrone M.A., Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118:620–636. DOI: 10.1161/CIRCRESAHA.115.306301.

Chen J.-Y., Ye Z.-X., Wang X.-F., Chang J., Yang M.-W.,

Zhong H., Hong F.-F., Yang S.-L. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed. Pharmacother. 2018;97:423–428. DOI: 10.1016/j.biopha.2017.10.122.

Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241. DOI: 10.1038/35025203.

Louis S.F., Zahradka P. Vascular smooth muscle cell motility: From migration to invasion. Exp. Clin. Cardiol. 2010;15:e75–e85.

Gonzalez L., Trigatti B.L. Macrophage Apoptosis and Necrotic Core Development in Atherosclerosis: A Rapi­dly Advancing Field with Clinical Relevance to Imaging and Therapy. Can. J. Cardiol. 2017;33:303–312. DOI: 10.1016/j.cjca.2016.12.010.

Lomashvili K.A., Cobbs S., Hennigar R.A., Hardcastle K.I., O’Neill W.C. Phosphate-Induced Vascular Calcification: Role of Pyrophosphate and Osteopontin. J. Am. Soc. Nephrol. 2004;15:1392–1401. DOI: 10.1097/01.ASN.0000128955.83129.9C.

Pugliese G., Iacobini C., Fantauzzi C.B., Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015;238:220–230. DOI: 10.1016/j.atherosclerosis.2014.12.011.

Farhat N., Thorin-Trescases N., Voghel G., Villeneuve L., Mamarbachi M., Perrault L.P., Carrier M., Thorin E. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can J Physiol Pharmacol. 2008;86:761–769.

Niemann B., Chen Y., Teschner M., Li L., Silber R.E., Rohrbach S. Obesity induces signs of premature car­diac aging in younger patients: the role of mitochondria. J Am Coll Cardiol. 2011;57:577–585.

Bolton E., Rajkumar C. The ageing cardiovascular system. Rev Clinical Gerontol. 2010;21:99–109.

Virmani R., Avolio A.P., Mergner W.J., Robino­witz M., Herderick E.E., Cornhill J.F., Guo S.Y., Liu T.H., Ou D.Y., O’Rourke M. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis: comparison between occidental and Chinese communities. Am J Pathol. 1991;139:1119–1129.

O’Rourke M.F., Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007; 50:1–13.

Zieman S., Kass D. Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail. 2004;10:144–149.

Astrand H., Stalhand J., Karlsson J., Karlsson M., Sonesson B., Lanne T. In vivo estimation of the contribution of elastin and collagen to the mechanical pro­perties in the human abdominal aorta: effect of age and sex. J Appl Physiol. 2011;110:176–187..

Franklin S.S., Gustin W.T., Wong N.D., Larson M.G., Weber M.A., Kannel W.B., Levy D. Hemodynamic patterns of age-related changes in blood pressure: the Framingham Heart Study. Circulation. 1997;96:308–315.

Wang M., Zhang J., Jiang L.Q., Spinetti G., Pintus G., Monticone R., Kolodgie F.D., Virmani R., Lakatta E.G. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension. 2007;50:219–227.

Hashimoto M., Ishinaga Y., Honda M., Ohoka M., Morioka S., Moriyama K. Age-related increase in the uptake of acetylated low density lipoprotein into cultured endothelial cells from rat aorta. Exp Gerontol. 1991;26:397–406.

Olive M., Harten I., Mitchell R. et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010; 30:2301–2309.

Varga R., Eriksson M., Erdos M.R. et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2006;103:3250–3255.

Massip L., Garand C., Turaga R.V., Deschenes F., Thorin E., Lebel M. Increased insulin, triglycerides, reactive oxygen species, and cardiac fibrosis in mice with a mutation in the helicase domain of the Werner syndrome gene homologue. Exp Gerontol. 2006;41:157–168.

Stemerman M., Weinstein R., Rowe J., Maciag T., Fuhro R., Gardner R. Vascular smooth muscle cell growth kinetics in vivo in aged rats. Proc Natl Acad Sci U S A. 1982;79:3863–3866.

Hariri R.J., Hajjar D.P., Coletti D., Alonso D.R., Weksler M.E., Rabellino E. Aging and arteriosclerosis: cell cycle kinetics of young and old arterial smooth muscle cells. Am J Pathol. 1988;131:132–136.

Lutgens E., de Muinck E.D., Kitslaar P.J., Tordoir J.H., Wellens H.J., Daemen M.J. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res. 1999;41:473–479.

Moon S.K., Cha B.Y., Kim C.H. In vitro cellular aging is associated with enhanced proliferative capacity, G1 cell cycle modulation, and matrix metalloproteinase-9 regulation in mouse aortic smooth muscle cells. Arch Biochem Biophys. 2003;418:39–48.

O’Brien E.R., Alpers C.E., Stewart D.K., Ferguson M., Tran N., Gordon D., Benditt E.P., Hinohara T., Simpson J.B., Schwartz S.M. Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res. 1993;73:223–231.

Bennett M.R., Evan G.I., Schwartz S.M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995;95: 2266–2274.

Patel V.A., Zhang Q.J., Siddle K., Soos M.A., Goddard M., Weissberg P.L., Bennett M.R. Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling. Circ Res. 2001;88:895–902.

Matthews C., Gorenne I., Scott S., Figg N., Kirkpatrick P., Ritchie A., Goddard M., Bennett M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006;99:156–164.

O’Sullivan M., Scott S.D., McCarthy N., Figg N., Shapiro L.M., Kirkpatrick P., Bennett M.R. Differential cyclin E expression in human in-stent stenosis smooth muscle cells identifies targets for selective anti-restenosis therapy. Cardiovasc Res. 2003;60:673–683.

Bennett M.R., Macdonald K., Chan S.W., Boyle J.J., Weissberg P.L. Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res. 1998;82:704–712.

Edelberg J.M., Tang L., Hattori K., Lyden D., Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ Res. 2002;90:E89–E93.

Xu Q., Wang J., He J., Zhou M., Adi J., Webster K.A., Yu H. Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. Atherosclerosis. 2011;219:92–99.

Bentzon J.F., Weile C., Sondergaard C.S., Hindkjaer J., Kassem M., Falk E. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:2696–2702.

Hagensen M.K., Raarup M.K., Mortensen M.B., Thim T., Nyengaard J.R., Falk E., Bentzon J.F. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovasc Res. 2012;93:223–231.

Hagensen M.K., Shim J., Thim T., Falk E., Bentzon J.F. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation. 2010;121:898–905.

Heiss C., Keymel S., Niesler U., Ziemann J., Kelm M., Kalka C. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. 2005;45:1441–1448.

Shao H., Xu Q., Wu Q., Ma Q., Salgueiro L., Wang J., Eton D., Webster K.A., Yu H. Defective CXCR4 expression in aged bone marrow cells impairs vascular regeneration. J Cell Mol Med. 2011;15:2046–2056.

Bosch-Marce M., Okuyama H., Wesley J.B. et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007;101:1310–1318.

Chang E.I., Loh S.A., Ceradini D.J., Chang E.I., Lin S.E., Bastidas N., Aarabi S., Chan D.A., Freedman M.L., Giaccia A.J., Gurtner G.C. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation. 2007;116:2818–2829.

Zhang Y., Herbert B.S., Rajashekhar G., Ingram D.A., Yoder M.C., Clauss M., Rehman J. Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-alpha via the p38 mitogen-activated protein kinase pathway. FASEB J. 2009;23:1358–1365.

Carracedo J., Merino A., Briceno C., Soriano S., Buendia P., Calleros L., Rodriguez M., Martin-Malo A., Aljama P., Ramirez R. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J. 2011;25:1314–1322.

Botto N., Rizza A., Colombo M.G., Mazzone A.M., Manfredi S., Masetti S., Clerico A., Biagini A., Andreassi M.G. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493:23–30.

Martinet W., Knaapen M.W., De Meyer G.R., Herman A.G., Kockx M.M. Elevated levels of oxidative DNA damage and DNA repair enzymes in human athe­rosclerotic plaques. Circulation. 2002;106:927–932.

Botto N., Berti S., Manfredi S., Al-Jabri A., Fede­rici C., Clerico A., Ciofini E., Biagini A., Andreassi M.G. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res. 2005;570:81–88.

Mahmoudi M., Gorenne I., Mercer J., Figg N., Littlewood T., Bennett M. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res. 2008;103:717–725.

Gray K., Bennett M. Role of DNA damage in atherosclerosis: bystander or participant? Biochem Pharmacol. 2011;82:693–700.

Wagner M., Hampel B., Bernhard D., Hala M., Zwer­schke W., Jansen-Durr P. Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol. 2001;36:1327–1347.

Asai K., Kudej R.K., Shen Y.T., Yang G.P., Takagi G., Kudej A.B., Geng Y.J., Sato N., Nazareno J.B., Vatner D.E., Natividad F., Bishop S.P., Vatner S.F. Peripheral vascular endothelial dysfunction and apo­ptosis in old monkeys. Arterioscler Thromb Vasc Biol. 2000;20:1493–1499.

Shi Q., Aida K., Vandeberg J.L., Wang X.L. Passage-dependent changes in baboon endothelial cells–relevance to in vitro aging. DNA Cell Biol. 2004;23:502–509.

Khaidakov M., Wang X., Mehta J.L. Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS One. 2011;6:e20964.

Sato I., Morita I., Kaji K., Ikeda M., Nagao M., Murota S. Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem Biophys Res Commun. 1993;195:1070–1076.

Donato A.J., Gano L.B., Eskurza I., Silver A.E., Gates P.E., Jablonski K., Seals D.R. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009;297:H425–H432.

Zhou X., Perez F., Han K., Jurivich D.A. Clonal senescence alters endothelial ICAM-1 function. Mech Ageing Dev. 2006;127:779–785.

Song Y., Shen H., Schenten D., Shan P., Lee P.J., Goldstein D.R. Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.2012;32:103–109.

Calvert P.A., Liew T.V., Gorenne I. et al. Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity. Arterioscler Thromb Vasc Biol. 2011;31:2157–2164.

Razani B., Feng C., Semenkovich C.F. p53 is required for chloroquine-induced atheroprotection but not insulin sensitization. J Lipid Res. 2010;51:1738–1746.

Werner C., Gensch C., Poss J., Haendeler J., Bohm M., Laufs U. Pioglitazone activates aortic telomerase and prevents stress-induced endothelial apoptosis. Atherosclerosis. 2011;216:23–34.

Harley C.B. Telomerase and cancer therapeutics. Nat Rev Cancer. 2008;8:167–179.

Hoen P.A., Van der Lans C.A., Van Eck M., Bijsterbosch M.K., Van Berkel T.J., Twisk J. Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ Res. 2003;93:262–269.

Collins A.R., Lyon C.J., Xia X., Liu J.Z., Tangirala R.K., Yin F., Boyadjian R., Bikineyeva A., Pratico D., Harrison D.G., Hsueh W.A. Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ Res. 2009;104:e42–e54.

Fuhrman B., Volkova N., Aviram M. Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase. Atherosclerosis. 2002;161:307–316.

Ricciarelli R., Zingg J.M., Azzi A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 sca­venger receptor expression in cultured aortic smooth muscle cells. Circulation. 2000;102:82–87.

Park L.K., Friso S., Choi S.W. Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc. 2012;71:75–83.

Yusuf S., Dagenais G., Pogue J., Bosch J., Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:154–160.

Cook N.R., Albert C.M., Gaziano J.M., Zaharris E., MacFadyen J., Danielson E., Buring J.E., Manson J.E. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study. Arch Intern Med. 2007;167:1610–1618.

Chen X.L., Dodd G., Thomas S., Zhang X., Wasserman M.A., Rovin B.H., Kunsch C. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol. 2006;290:H1862–H1870.

Levonen A.L., Inkala M., Heikura T., Jauhiainen S., Jyrkkanen H.K., Kansanen E., Maatta K., Romppanen E., Turunen P., Rutanen J., Yla-Herttuala S. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arterioscler Thromb Vasc Biol. 2007;27:741–747..

Velmurugan K., Alam J., McCord J.M., Pugazhenthi S. Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim. Free Radic Biol Med. 2009;46:430–440.

Sussan T.E., Jun J., Thimmulappa R., Bedja D., Antero M., Gabrielson K.L., Polotsky V.Y., Biswal S. Disruption of Nrf2, a key inducer of antioxidant defen­ses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One. 2008;3:e3791.

Huang J.Y., Hirschey M.D., Shimazu T., Ho L., Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804:1645–1651.

Verdin E., Hirschey M.D., Finley L.W., Haigis M.C. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–675.

Spyridopoulos I., Haendeler J., Urbich C., Brummendorf T.H., Oh H., Schneider M.D., Zeiher A.M., Dimmeler S. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation. 2004;110:3136–3142.

Pernice F., Floccari F., Caccamo C., Belghity N., Mantuano S., Pacile M.E., Romeo A., Nostro L., Barilla A., Crasci E., Frisina N., Buemi M. Chromosomal damage and atherosclerosis: a protective effect from simvastatin. Eur J Pharmacol. 2006;532:223–229.

Schupp N., Schmid U., Heidland A., Stopper H. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 2008;199:278–287.

Herbert K.E., Mistry Y., Hastings R., Poolman T., Niklason L., Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res. 2008; 102:201–208.

Oeseburg H., Iusuf D., van der Harst P., van Gilst W.H., Henning R.H., Roks A.J. Bradykinin protects against oxidative stress-induced endothelial cell senescence. Hypertension. 2009;53:417–422.

Fontana L., Vinciguerra M., Longo V.D. Growth factors, nutrient signaling, and cardiovascular aging. Circ Res. 2012;110:1139–1150.

Guo Z.M., Yang H., Hamilton M.L., VanRemmen H., Richardson A. Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech Ageing Dev. 2001;122:1771–1786.

Zanetti M., Gortan Cappellari G., Burekovic I., Barazzoni R., Stebel M., Guarnieri G. Caloric restriction improves endothelial dysfunction during vascular aging: effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol. 2010;45:848–855..

Fornieri C., Taparelli F., Quaglino D., Contri M.B., Davidson J.M., Algeri S., Ronchetti I.P. The effect of caloric restriction on the aortic tissue of aging rats. Connect Tissue Res. 1999;40:131–143.

Ungvari Z., Parrado-Fernandez C., Csiszar A., de Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res. 2008;102:519–528.

Yang H., Shi M., Story J., Richardson A., Guo Z. Food restriction attenuates age-related increase in the sensitivity of endothelial cells to oxidized lipids. J Gerontol A Biol Sci Med Sci. 2004;59:316–323.

Shinmura K. Cardiovascular protection afforded by caloric restriction: essential role of nitric oxide synthase. Geriatr Gerontol Int. 2011;11:143–156.

Csiszar A., Labinskyy N., Jimenez R., Pinto J.T., Ballabh P., Losonczy G., Pearson K.J., de Cabo R., Ungvari Z. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev. 2009;130:518–527.

Oellerich M., Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res. 2012;110:1238–1251.

Zhang Q.J., Wang Z., Chen H.Z., Zhou S., Zheng W., Liu G., Wei Y.S., Cai H., Liu D.P., Liang C.C. Endothelium-specific overexpression of class III deacety­lase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res. 2008;80:191–199.

Mattagajasingh I., Kim C.S., Naqvi A., Yamamori T., Hoffman T.A., Jung S.B., DeRicco J., Kasuno K., Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2007;104:14855–14860..

Rippe C., Lesniewski L., Connell M., LaRocca T., Donato A., Seals D. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell. 2010;9:304–312.

Ota H., Akishita M., Eto M., Iijima K., Kaneki M., Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol. 2007;43:571–579..

Chen Z., Peng I.C., Cui X., Li Y.S., Chien S., Shyy J.Y. Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A. 2010;107:10268–10273.

Stein S., Lohmann C., Schafer N., Hofmann J., Rohrer L., Besler C., Rothgiesser K.M., Becher B., Hottiger M.O., Boren J., McBurney M.W., Landmes­ser U., Luscher T.F., Matter C.M. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J. 2010;31:2301–2309.

Pearson K.J., Baur J.A., Lewis K.N. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8:157–168.

Gerhard M., Roddy M.A., Creager S.J., Creager M.A. Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension. 1996;27:849–853.

Chung H.Y., Sung B., Jung K.J., Zou Y., Yu B.P. The molecular inflammatory process in aging. Antioxid Redox Signal. 2006;8:572–581.

Dimri G., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medranos E., Linskens M., Rubelj I., Pereira-Smith O., Peacocke M. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–9367.

Minamino T., Miyauchi H., Yoshida T., Ishida Y., Yoshida H., Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105:1541–1544..

Kuchay A.A., Lipin A.N., Kuryanov P.S. et.al. The hybrid surgery concepts for atherosclerotic lesions of lower limb arteries. Atherosclerosis and dyslipidemias. 2023;3(52):37–43.

Kuchay A.A., Lipin A.N. et al. Treatment of multile­vel lesions of arteries in lower extremities in cases of CLTI. Medical Alliance. 2022;10(S3):187–189.

Kuchay A.A., Lipin A.N., et.al. Lower extremity peripheral artery disease: contemporary epidemio­logy, management and future trends (a scientific statement). Russian Biomedical Research. 2023;8(4):54–64.

Kuchay A.A., Lipin A.N. A comparative retrospective analysis of the results of hybrid interventions and femoral-tibial bypass in extended multilevel infrainguinal arterial segment lesions in patients with chronic critical limb ischemia. Pediatrician (St. Petersburg). 2023;14(6):25–35. DOI: 10.17816/PED626430.

Kuchay A.A., Lipin A.N., Gruzdev N.N., Borisov A.G., Kashapov I.S. Critical limb threatening ischemia and its management. Russian Biomedical Research (St. Petersburg). 2024;9(1):33–46. DOI: 10.56871/RBR.2024.68.81.005.

Kuchay A.A., Lipin A.N., Karelina N.R., Artyukh L.Yu.

Revascularization of lower limb based on the angiosome concept with early local flap reconstruction (a case report). Forcipe. 2022;5(4):29–35.

Kuchay A.A., Lipin A.N., Karelina N.R. et al. Revascularization in extended occlusions of the superficial part of the femoral artery and multi-storey lesions of the arteries of the lower extremity. Forcipe. 2022;5(3):4–14.

Kurianov P., Lipin A., Antropov A. et al. Popliteal artery angioplasty for chronic total occlusions with versus without the distal landing zone. Annals of vascular surgery. 2020;62(68):417–25.

Kuchay A.A., Lipin A.N., Gruzdev N.N., Bori­sov A.G., Kashapov I.S., Atmadzas K.A., Orlov A.G., Muhammedov H.A. Comparison of clinical outcome of bypass surgery versus below-the-knee angioplasty and stenting in infrapopliteal lesions that results in ulcer or toe gangrene. Russian Biomedi­cal Research. 2024;9(2):50–56. DOI: 10.56871/RBR.2024.50.12.006.

Kuchay A.A., Lipin A.N., Kurianov P.S. Advantages of the hybrid revascularization technique in the treatment of extended occlusions of the superficial femoral artery and multilevel lesions of the lower extremity arteries Regional blood circulation and microcirculation. 2024;23(2):60–66. DOI: 10.24884/1682-6655-2024-23-2-60-66.

Kuchay A.A., Lipin A.N. Hybrid interventions on distal sections of the main arteries in extended chronic occlusions of the superficial femoral artery in patients with critical limb ischemia. Atherosclersis and dyslipidemias. 2021;2(55):33–40. DOI: 10.34687/2219-8202.JAD.2024.02.0004.

Опубликован
2025-06-11
Как цитировать
Кучай, А. А., Липин, А. Н., Козлов, К. Л., Груздев, Н. Н., Кучай, Г. Ш., & Шугаров, А. А. (2025). ОСОБЕННОСТИ ПАТОГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ РАЗВИТИЯ АТЕРОСКЛЕРОЗА И СТАРЕНИЯ. Университетский терапевтический вестник, 7(1), 96-115. https://doi.org/10.56871/UTJ.2025.38.38.009
Раздел
Обзоры