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Pe3stome. TeepaocTb 3yOHbIX TKaHEN SBNAETCS pe3ynsTaToM OMOMUHEPAN3aLM BHEKNETOYHOTO MaTpuKca: amopd-
HOe BHEKIIETOYHOE BELLECTBO CTAHOBUTCSH MUKPOCTPYKTYPUPOBAHHBIM W MOCTENEHHO HACbILAETCH COEANHEHUSMM
kanbLus n ocopa 4o CTeneHun, NO3BONAILEN BbIAEPXKNBATL BbICOKME MEXAHUYECKME Harpy3kn. B aTom npouecce
yyacTBytT rugpokcuanatut (HAP), obpasyrownii B MaTpukce rpOMO3aK1e KpUCTaNIMYECKMe CTPYKTYPbI, U MHOTO-
yncnexHble Bernku, BolpabaTbiBaeMble cneluanm3npoBaHHbIMK KneTkami. bernku BHEKNEeTOYHOro MaTpukca urpatT
KIK04eBYI0 POnb, Kak (hopMUpYIOLLYIO, Tak U perynupytoLlyto. CoBpeMeHHas CTOMaTtoniorus yBepeHHO NepexoamnT Ha
MOSEKYNAPHO-reHeTUYeCKNin ypoBeHb. B aaHHOM 0630pe paccmaTprBaloTCs OCHOBHbIE MaTpUyHble 6enku MuHepanu-
30BaHHbIX TKaHew 3y60B — benku amanu, AeHTUHa 1 LiemeHTa. OHN SBASIOTCS YHUKANbHBIMU areHTamu, 3afatoLLmmm
XxapaKkTep MUHepanuaaunn u cneunduyeckyto yHKLMI 3TUX TKaHel B cocTaBe 3y6a. bonbluoe BHUMAHWE yaeneHo
PONM FTEHETUYECKNX HapYLLIEHWIA B CTOMATONornyeckoi natonorun. O630p BKOYAET AaHHbIE O HAPYLIEHUN Pa3BUTMS
3yboB y nabopaTopHbIX KMBOTHBIX C UCKYCCTBEHHO HApYLLUEHHOW reHeTUYecKon perynsaumen 6enkos MuHepann3o-
BaHHbIX TkaHei 3yba. Cpean npoTteas MaTpukca AeHTHa 0coboe BHIUMaHWe yaeneHo MaTpyUKkCHbIM MeTannonpoTe-
asam, KoTopble NpeacTaBnftoT coboit rpynny KanbLyuit3aBUCUMbIX LIMHKCOAEPKALLMX 3HAONENTUAA3, y4acTBYOLWMX B
OCHOBHOM B Pa3BUTUW 1 PEMOLENMPOBaHUM BHEKIIETOYHOIO MaTpukca bnarogaps cBoen cnocobHOCTU pacllennaTh
opraHuyeckne monekynbl. O63op Byaet cnocobeTBOBaTH 60N1EE TMYBOKOMY MOHMMAHWIO BpaYaMu-cToMaTonorammu
CYTW NpOLeCCOB, NPOTEKAKOLIMX B MATpUKCe 3yba npu ero MuHepanuaawmu, u ponu cneyuduyeckux 6enkoB B aTUX
npoweccax.

KntoueBble cnoBa: 6enku; amanb; AeHTUH; LleMeHT; Kapuec.
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Abstract. The hardness of dental tissues is a result of the extracellular matrix biomineralization; the amorphous
extracellular substance becomes microstructured and gradually saturated with calcium and phosphorous compounds
to the extent that allows withstanding high mechanical loads. This process involves hydroxyapatite (HAP), which
forms bulky crystalline structures in the matrix, and numerous proteins produced by specialized cells. Proteins of the
extracellular matrix play a pivotal role, both formative and regulatory. Modern stomatology is confidently passing on to
the molecular genetic level. This review addresses the major matrix proteins of mineralized dental tissues — enamel,
dentin and cementum proteins. They are unique agents that set the mineralization pattern and specific function of these
tissues within a tooth. Much attention is paid to the role of genetic disorders in dental pathology. The review includes
data on impaired dental development in laboratory animals with artificially disrupted genetic regulation of mineralized
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dental tissue proteins. The review will promote deeper insight into the core of the processes proceeding in the dental
matrix during its mineralization and the role of tooth-specific proteins in these processes in health and disease. Among
dentin matrix proteases, special attention has been paid to matrix metalloproteases, that compose a group of calcium-
dependent zinc-containing endopeptidases involved mainly in the development and remodeling of the extracellular

matrix due to their ability to break down organic molecules.

Key words: proteins; enamel; dentin; cementum; caries.

INTRODUCTION

Teeth are regularly exposed to mechanochemical effects of
dense substances during the initial, mechanical, stage of diges-
tion — grinding food in the oral cavity. The hardness of dental tis-
sues is a result of biomineralization of the extracellular matrix: the
amorphous extracellular substance becomes microstructured and
gradually saturated with calcium and phosphorous compounds to
the extent that allows withstanding high mechanical loads. This
process involves hydroxyapatite (HAP), which forms bulky crys-
talline structures in the matrix, and numerous proteins produced
by specialized cells. Proteins of the extracellular matrix play a pi-
votal role, both formative and regulatory.

Human teeth are composed of three types of hard, i.e. mine-
ralized tissues — enamel, dentin and cementum. The fourth
type — pulp — a composite soft, i.e. non-mineralized, tissue is
beyond the scope of this review. Enamel covers the crown of a
tooth and is the hardest tissue in a human body. It is this tis-
sue that forms a cutting edge which is the first to confront yet
unground food. Cementum is an outer layer of the root of a tooth.
Its structure (mineralization pattern) shares a considerable simi-
larity with bone tissue. Together with the fibers of the periodontal
ligament, cementum holds a tooth in the alveolar socket and pre-
vents both an expansion of surrounding tissues and penetration
of pathogenic microorganisms into a tooth. Dentin makes up the
bulk of a tooth and separates enamel in the crown and cementum
in the root from the pulp chamber and root canals. This dynamic
calcified tissue also has a mineralization pattern which determines
its density, elasticity, width, permeability for chemical substances,
and regenerative ability.

This review addresses the major matrix proteins of minera-
lized dental tissues — unique agents that determine the mine-
ralization pattern and specific function of these tissues. It is the
authors’ hope that their efforts will promote deeper insight into the
processes that occur in the tissue matrix during its biomineraliza-
tion and the role of proteins in these processes both in normal
and pathological conditions. The most studied of these proteins
are listed in Table 1.

ENAMEL PROTEINS

Enamel is a dense outermost sheath that covers the crown
of a tooth. Structurally, like dentin, it is a mineralized framework
of organic molecules, although much stronger and harder. About
96% of the MM of mature enamel is composed of HAP crystals,

while the remaining 4% fall on water and organic compounds.
Such a solid structure of enamel ensures its protective properties,
as well as its major function in the digestive system — primary
(mechanical) food processing in the oral cavity [120].

Enamel synthesis and formation. Enamel formation results
from biominaralization of the amorphous organic matrix which is
produced by epithelioid cells — ameloblasts. These cells secrete
matrix components from the Tomes’s processes — projections sit-
uated on their basal (secretory) end — toward the enamel-dentin
junction. During this process, ameloblasts move away from the
enamel and thus always remain at the periphery of the growing
tissue (amelocytes and odontocytes prove to be separated by the
enamel and dentin layers, respectively).

Enamel consists of prisms and a surrounding inter-prismatic
substance which differ in the direction of HAP crystallization: in-
tra-prismatic crystals are oriented along the prism’s longitudinal
axis, while inter-prismatic crystals are oriented otherwise (mainly
perpendicular) [120].

Extracellular matrix proteins

ECM proteins include amelogenin, ameloblastin, and ena-
melin. On human chromosomes, the ameloblastin and enam-
elin genes are localized to h4q13, while the amelogenin genes
(AMELX and AMELY) reside at Xp22 and Yp11, respectively. At
the earlier stages of evolution, the genes of all three enamel mat-
rix proteins were parts of the same gene which encoded a secre-
tory calcium-binding phosphoprotein (SCPP) [110], i.e. the amelo-
genin gene got to sex chromosomes as a result of translocation,
while the ameloblastin and enamelin genes retained their initial
location thereon [53, 57, 108].

Our current knowledge of the function of the enamel matrix
proteins is reduced to the following [2, 75, 76, 109]:

1) they are essential for the normal enamel formation and in-
volved mainly in its maturation as being secreted by ame-
loblasts as part of the enamel amorphous substance and
almost completely lacking in a fully mineralized matrix (i.e.
in mature enamel);

2) amelogenin, ameloblastin and enamelin genes turned into
pseudogenes in toothless (enamelless) mammals, indica-
ting a specific role of these proteins in the enamel forma-
tion.

Amelogenin is the most common protein of the enamel ECM.

In humans, 90% of the MM of amelogenin is transcribed from
the X chromosome (PCR-based AMELY gene detection is used
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Table 1
Dental proteins
Protein Characteristics Function Pathology*
Extracellular matrix proteins
Collagen | TL — enamel, Fibrillar collagen — scaffold for HAP crystals Systemic connective tissue diseases
Type | Collagen dentin, cementum and noncollagenous proteins
G—7?
MM —?
DSP TL - dentin Omnipresent localization. In small amounts Dentin mineralization density
Dentin sialoprotein G —4qg221 increases while in large decreases HAP increase during gene knockout
MM — 52.5 crystallization in mice
DGP TL — dentin Involved in dentin biomineralization Undetermined
Dentin glycoprotein G — 49221
MM — 19
DPP TL — intratubular dentin HAP nucleation. Association with collagen Dentin undermineralization in mouse
Dentin at the mineralization gene knockouts
phosphoprotein G — 49221
MM — 140
DMP-1 TL — dentin High affinity for collagen. High ability to bind Hypophosphatemic rickets.
Dentin matrix protein 1 G —4qg221 calcium. Regulation of gene DSPP transcription. Dentin malformation due to
MM — 53.5 Regulation of mineralization predentin dentinogenesis imperfecta

type Il

BSP TL — dentin, cementum HAP nucleation. Crystal face bonding. Cell Cementum thinning. Atypical
Bone sialoprotein G — 49221 signaling, differentiation and aggregation mineralization sites in mouse gene
MM — 60-80 knockouts
OPN TL — dentin, cementum HAP nucleation. Crystal face bonding. Cell Cementum thinning.
Osteopontin G —4qg221 signaling, differentiation and aggregation Atypical mineralization sites
MM — 34 in mouse
gene knockouts
MEPE TL — dentin, cementum Inhibition of mineralization. Regulation X-associated hypophosphatemic
Matrix extracellular G — 49221 of cell differentiation rickets
phosphoglycoprotein MM — 57
Amelogenin TL — enamel HAP crystal growth regulation during enamel Enamel malformation:
G — Xp22 n Yp11 matrix maturation amelogenesis imperfecta,
MM — 24 soft enamel, poor enamel-dentin
bonding — chipping
Ameloblastin TL — enamel Enamel prism formation at initial stages Enamel malformation in mouse gene
G —4q13 of amelogenesis knockouts
MM — 48
Enamelin TL — enamel Enamel matrix formation. Induction Amelogenesis imperfecta
G —4q13 of biomineralization. KLK4 activation (various phenotypes)
MM — 65
ON TL — dentin, cementum Inhibition of mineralization
Osteonectin G —5q33.1
MM — 33
Osteocalcin TL — dentin, cementum Inhibition of mineralization
G — 1925-q31
MM —6
MGP TL — cementum Inhibition of mineralization
Matrix Gla protein G—12p12.3
MM — 10
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Ending of Table 1
Protein Characteristics Function Pathology*
TIMPs TL — dentin Inhibition of MMPs
Tissue inhibitors G —TIMP1 —X11.3
of metalloproteinases TIMP2 — 17¢25.3,
TIMP3 — 22q12.3,
TIMP4 — 3p25.2
MM —?
Extracellular matrix proteases
AP TL — cementum Pyrophosphate hydrolysis. Proliferation of Thin acellular cementum. Sites
Alkaline phosphatase G —2q37 cementocytes of atypical structure
MM — 140
KLK4 TL — cementum Substrates: amelogenin, ameloblastin, Amelogenesis imperfecta (various
Kallikrein 4 G —19q13.41 enamelin. Protein degradation during enamel phenotypes)
MM — 27 maturation
Matrix metalloproteases
MMP2 TL — dentin Substrates: collagen, decorin Underlie caries pathogenesis.
Matrix matelloproteinase 2, G —16q12.2 Enzyme deficiency causes enamel
Gelatinase A MM — 72 malformation
MMP3 TL — dentin Substrates: proteoglycans and noncollagenous
Matrix matelloproteinase 3, G—11922.2 proteins
Stromelysin-1 MM — 54
MMP8 TL — dentin Substrate: type | collagen helix
Matrix matelloproteinase 8, G —11g22.2
Collagenase 8 MM — 53
MMP9 TL — dentin Protease activity: C-terminal telopeptide,
Matrix matelloproteinase 9, G —h20q13.12 denatured collagen, decorin
Gelatinase B MM — 92
MMP20 TL — enamel Substrates: amelogenin, DSPP. Activation of
Matrix matelloproteinase G — 11922.2 KLK4
20, Enamelysin MM — 54
Cathepsin B TL — dentin Substrates: N- and C-terminal collagen MMP-like role in caries pathogenesis
G —8p23.1 telopeptides and proteoglycans
MM — 43-46
Cathepsin D TL — dentin Substrates: proteoglycans
G — 11p15.5
MM — 10
Cathepsin K TL — dentin Substrates: type | collagen, N- and C-terminal
G —1p231 telopeptides, collagen helix. Fibrillar collagens
MM — 23.5

Notes: Protein TL — localization in tissue; G — gene localization; MM — molecular mass, kDa. *Mouse gene knockout phenotypes referred to when human dental

pathologies are not yet documented.

in criminalistics for sex identification) [103]. In mouse amelogenin
gene knockouts, enamel retains its structure during development
but has smaller HAP crystals [132], while in mouse enamelin [48]
and ameloblastin [28] gene knockouts mature enamel does not
develop whatsoever, indicating a role of amelogenin in matura-
tion, not formation, of the ECM.

More than ten AMELX gene mutations that cause ameloge-
nesis imperfecta (Al) have been identified, accounting for about
5% of all occurrences of Al. The mutant phenotype in women in-
cludes vertical (craze) lines on teeth and alternate normal and

hypoplastic enamel regions. Men with such mutations exhibit a
similar but more pronounced phenotype [11].

No occurrences of Al caused by a mutation in the AMELY gene
are identified so far. Moreover, in two men with a detected muta-
tion in this gene there were no Al manifestations [61]. In humans
lacking the AMELX gene, like in mouse AMELX gene knockouts,
enamel was found to be thin but well-formed [11].

Ameloblastin is the second most common protein of the
enamel ECM [60]. Immunohistochemically, the ameloblastin
breakdown products were localized to the sheath space which
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surrounds each prism by a thin layer [12]. Full-length ameloblas-
tin was detected in newly formed enamel where it accumulated
on the surface of enamel prisms [48, 79]. From this, it can be
inferred that the full-length molecule of the protein participates in
the processes that occur in the depth of the mineralization front,
while its breakdown products are involved in the formation of the
sheath space [12].
Mutations in the ameloblastin (AMBN) gene that cause Al are
not detected in humans. In mouse AMBN gene knockouts, dentin
is covered by a thin layer of the aprismatic and crystalless sub-
stance, i.e. structurally differs from the normal enamel [28, 130].
Simultaneously, ameloblasts were observed to behave abnormal-
ly: during maturation, normal ameloblasts disrupted the under-
lying basement membrane and formed the Tomes'’s processes in
its place. Instead, mutant cells, after the destruction of the base-
ment membrane, came off, lost their polarity and, while clashing
with each other, formed multilayered cell structures, indicative of a
possible contribution of ameloblastin to cell adhesion [28].
Enamelin in humans is transcribed from the ENAM gene and
in the form of a phosphorylated glycoprotein is secreted to the
ECM, undergoing there several proteolytic treatments [26, 39,
44]. One of the enamelin fragments (32 kDa) was established to
accumulate in the deep enamel layers [102]. It is this enamelin
breakdown product that is most conserved in mammals [1], indi-
cative of an important role of this domain in the enamel formation.
Like the other enamel proteins, enamelin involved exclusively in
the formation of the enamel matrix is not synthesized in toothless
(enamelles) mammals, as indicated by the transformation of the
gene into pseudogene [76]. This protein is not synthesized in vitro
due to a great complexity caused by post-translational modifica-
tion, as well as the presence of several glycosylation sites.
The function of enamelin was studied on mouse ENAM gene
knockouts which exhibited multiple abnormalities of amelogenesis
(up to its agenesis), indicative of a key role of enamelin in the
crystallization and formation of the enamel matrix [48, 71, 104,
112]. In humans, damage to the ENAM gene (or its mutation) re-
sults in Al with different phenotypes:
1) after damage to a single allele, the phenotype either did
not show up [56] or was characterized by enamel dyspla-
sia with hollows and depressions [40], horizontal lines [70],
thin enamel edge [98];

2) after damage to both alleles, enamel is extremely thin or
absent at all [40].

In most of the registered occurrences, mutations in the ENAM
gene caused autosomal dominant amelogenesis imperfecta [107].

Extracellular matrix proteases

As said above, most of the ECM proteins are present at the
formative and developmental stages of amelogenesis, while in
mature enamel their level is far lower: 30% during matrix secre-
tion and 2% after complete maturation. Such an obvious differ-
ence is achieved due to activity of two major proteases of the
enamel matrix — matrix metalloprotease 20 (MMP20), also called

enamelysin, and a serine protease kallikrein 4 (KLK4), formerly
called enamel matrix serine protease 1, (EMSP1) [10, 16, 22, 23,
47].

The maxima of MMP20 and KLK4 proteolytic activities are
separated in time: MMP20 peaks at the earlier or secretory [10]
and KLK4 at the later [21, 90, 110, 111, 118, 119] stages of ame-
logenesis.

MMP20 is a tooth-specific member of the metalloprotease
family. Genetic and cytological studies revealed traces of MMP20
gene expression in none of the normal (benign) cells except
ameloblasts [7] and odontoblasts, although its expression was
detected in some malignant cells [59, 116, 117, 125]. This sug-
gests a normal catalytic activity of MMP20 during amelo- and
dentinogenesis [18]. The suggestion is further supported by the
detection of the MMP20 pseudogene in mammals with reduced
teeth or enamel [76].

MMP20 exhibits enzymatic activity toward amelogenin and
ameloblastin at the early stages of the enamel matrix formation [5,
27,63, 65, 78, 82, 101]. It was established in vivo that the 32 kDa
enamelin is implicated in activation of KLK4 by splitting off its pro-
peptide amino acid sequence. Experiments on MMP20 knockout
mice demonstrated a characteristic aplastic phenotype: disrup-
ted prismatic crystallization pattern, thin, exfoliated and chipped
enamel [17]. The enamel thickness was reduced by 7-16%, de-
gree of mineralization by 50%, enamel strength by 37% [6].

Seven MMP20 gene mutations are identified that cause se-
veral types of Al, including hypomaturation Al [1, 26, 102, 104]
and mixed hypoplastic and hypomaturation Al [92, 129]. Being
both homozygous and heterozygous, these mutations can be
inherited in an autosomal recessive manner. These mutations
provide a phenotype with normal-sized teeth but an obscure
dentin-enamel borderline (X-ray image) and a tendency toward
detaching enamel from dentin [30, 58, 62, 91, 92, 129].

Both the phenotype and structural alterations in enamel of
mouse MMP20 gene knockouts and humans with a mutated
MMP20 gene, as well as the presence of a pseudogene in mam-
mals with reduced teeth or enamel, demonstrate the necessity of
MMP20 for normal amelogenesis.

KLK4 is a glycosylated serine protease synthesized in am-
eloblasts at the stage of enamel matrix maturation [45-47]. KLK4
expression occurs in teeth only at the developmental stage [82,
102]. KLK4 is secreted as a proenzyme and activated after split-
ting off the propeptide sequence by metalloprotease 20 [45]. How-
ever this is not the only mechanism of KLK4 activation, as evi-
denced by KLK4 activity detected in MMP20 gene knockout mice
[136]. Cathepsin C (CTSC) is considered to be the best candidate
for the role of KLK4 activator in vivo. At least, its ability to activate
KLK4 in vitro has been proved quite recently [123].

KLK4 was reported to exhibit proteolytic activity toward ame-
logenin [54], ameloblastin [18] and enamelin [102]. The pattern
of this activity (KLK4 splits the enamel matrix proteins into small
fragments) indicates a role of KLK4 in the elimination of the pro-
tein matrix products as enamel hardens at the later stages of
amelogenesis [18].
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Studies on mice with both KLK4 gene alleles knocked out
revealed that amelogenesis proceeded normally until the onset
of the maturation stage. However, after that there were detected
neither a breakdown of proteins nor their backward transport to
ameloblasts. As a result, the enamel matrix retained proteins
which caused its elevated softness and a tendency toward being
destructed during food mastication. One of the plausible reasons
may be concerned with a protein layer that separates prisms and
the inter-prismatic matrix at the formative stage. The removal of
this layer at the maturation stage precedes a tight contact bet-
ween these structures. In KLK4 null mice, the prisms were sepa-
rated from the inter-prismatic matrix, which could be due to the
lack of KLK4 proteolytic activity [105, 106].

In humans, there were identified two types of KLK4 gene mu-
tations causing Al:

1) the homozygous nonsense mutation near the sequence
encoding the enzyme’s catalytic domain that was detected
in a twin couple and entailed the same phenotype in both
twins: yellow or brown enamel, high dental sensitivity to
temperature drops, chipped enamel on the chewing sur-
faces of teeth [39];

2) the single-nucleotide deletion in both alleles of the 9-year-
old girl, sharing the same phenotype that was caused by
the above mutation: yellow to brown enamel with multiple
chips [129].

Similar phenotypes both in mice and humans imply a key role

of KLK4 in the enamel maturation.

DENTIN PROTEINS

Dentin is a dense dental tissue covered with enamel in the
crown and cementum in the root. It encloses the dental pulp and
makes up a major part of a tooth. Structurally, dentin represents a
highly mineralized matrix.

Synthesis of dentin. Dentin derives from the amorphous
extracellular substance (predentin) which is secreted by odonto-
blasts toward the dentin-enamel and dentin-cementum junctions.
Due to an interaction between proteins and matrix proteases,
the organic framework results, beginning to get covered with hy-
droxyapatite [HAP; Ca,(PO,),(OH)] crystals. By the end of odon-
togenesis, mature dense dentin occupies most of a tooth, while
its amorphous precursor, predentin, is reduced to a thin layer.
The proportion of crystalline HAP in the dentin molecular mass is
~70%, organic components amount ~20% and water ~10% [120].

Extracellular matrix (ECM) of dentin consists of two com-
ponents; the dentinal canaliculi (tubules), which transverse the
dentin layer, and spaces in between them [120]. The dentinal tu-
bules are formed by odontocyte processes; the number and size
of them decrease as the tubules move away from the pulp toward
dentin-enamel or dentin-cementum junctions. The dentin ECM is
subdivided into intratubular (ITD) and peritubular (PTD) dentin.
ITD components are randomly distributed along the fibers of the
tubule’s inner surface and have a crystallization axis which is
parallel to the tubule and perpendicular to the peridentin crystal-

lization axis. Demineralized ITD represents a network of collagen
fibers (90% of the total MM) covered by noncollagenous proteins.
Peridentin that completely ensheathes the tubules is also a mine-
ralized framework, however it is thinner and has noncollagenous
polypeptides and phospholipids instead of collagen fibers [35,
131].

Dentin matrix proteins

Type | collagen is the major dentin protein that makes up
90% of the MM of matrix organic substances. The type I collagen
molecule assembles from two a, and one a, chains that are re-
leased individually to the ECM in vesicles and then wind together
to form a triple helical tropocollagen. This assembly occurs with
the involvement of dentin proteases. Collagen fibrils serve as a
scaffold for intratubular dentin, and their ability to self-organize
underlies the formation of calcospherites — mineralized globules
of collagen fibrils. Inside of this structure, on the surface of and
even within fibrils, there are crystalline HAP flakes. Collagen
structures retain up to 56% of the HAP MM [120]. In predentin,
fibers that are parallel to the mineralization front make up about
88% (proximal third), 74% (middle third) and 62% (distal third)
of all collagen fibers, indicating an expulsion of collagen fibers
toward the biomineralization region [34].

Noncollagenous dentin matrix proteins (NMPs) are pro-
duced by odontoblasts and accumulate between collagen fibrils
and at the periphery of dentinal tubules (in peritubular dentin).
NMPs regulate intra-matrix processes, serving as crystallization
nucleators, biomineralization stabilizers and inhibitors.

DSPP (dentin sialophosphoprotein) is a phosphorylated
glycoprotein which is cleaved immediately upon secretion in
odontocytes by matrix metalloproteases MMP2 and MMP20 into
three daughter molecules [73, 134]:

1) DSP (dentin sialoprotein) — N-terminal DSPP fragment;

2) DGP (dentin glycoprotein) — central DSPP fragment;

3) DPP (dentin phosphoprotein or phosphophoryn) —

C-terminal DSPP fragment.

Experiments on DSPP gene knockout mice demonstrated a
close similarity between the associated pathology and dentino-
genesis imperfecta type lI, thus indicating a role of DSPP and its
daughter molecules in the formation and development of dentin
[114].

DSP (dentin sialoprotein) is an N-terminal fragment of the
DSPP molecule which is low-phosphorylated, rich in aspartic
and glutamic amino acids, as well as serine and glycine. It con-
tains 350 amino acid residues and makes up ~5-8% of the NMP
MM [135].

It was proved in vitro that DSP increases the number of HAP
crystals at low (>25 pg/ml) and inhibit their accumulation at high
(50-100 pg/ml) concentrations [13].

Using in vivo immunohistochemical methods, it was estab-
lished that DSP is present both in dentin tubules and peritubular
dentin. Experiments on mice with the retained ability to secrete
DSP and suppressed ability to produce DPP showed an increase
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in the total dentin volume, in contrast to DSP null mice (i.e. DSP
gene knockouts) that exhibited a higher mineralization density
of the dentin substance per its unit volume. Apparently, DSP is
involved in the regulation and formation of an ECM, while DPP
participates in the ECM initiation and maturation during minera-
lization [119].

DGP (dentin glycoprotein) is a central fragment of the DSPP
molecule and may also play a role in dentinogenesis, although
being found so far not in all mammalian species [134].

DPP (dentin phosphoprotein) and PP (phosphophorin) are
products of the C-terminal DSPP fragment. DPP is a protein with
a high content of phosphoserine and aspartic acid. It makes up
about 50% of the dentinal NMP MM. DPP has a completely de-
phosphorylated C-terminal fragment of 244 amino acid residues,
called DMP-2 (dentinmatrix protein 2). The calcium-binding ability
of this molecule is far lower than in PP. While PP folds into a com-
pact globular structure, DMP2 remains an intrinsically disordered
protein. PP shows the in vitro ability to nucleate crystalline HAP
flakes and interact with collagen fibrils [9]. Supposedly, the PP
fragment of DPP is a mediator of mineralization [43], while DMP2
is irrelevant to this process [77]. In vivo immunohistochemical lo-
calization of DPP in intratubular dentin at the mineralization front
also indicates its role as a dentinogenesis nucleator and mediator
[96].

DMP1 (dentin matrix protein 1) is a highly phosphorylated
acidic NMP due to a high level of serine and threonine. As a re-
sult of protease activity, it breaks down in dentin into the N- and
C-terminal fragments. By interacting with other molecules, DMP1
regulates DSPP gene transcription [85]. Its molecules are localized
to odontoblasts, microtubules and ameloblasts, being revealed im-
munohistochemically mainly at the mineralization front. DMP1 par-
ticipates in the regulation of mineralization, as supported by its high
calcium-binding ability and affinity for collagen fibrils. In in vitro ex-
periments, DMP1 bound to collagen fibrils promotes precipitation of
HAP crystal [30]. In vivo studies on DMP1 gene knockout mice also
demonstrate a role of this molecule in biomineralization of the ECM
[64]. DMP1 gene mutation is an important component of autosomal
recessive hypophosphatemic rickets [95]. DMP1 ablation results in
abnormal transformation of predentin into dentin, as well as hypo-
mineralization, thus causing proliferation of the dental pulp and roots
during postnatal development. The DMP1 mutant phenotype in mice
strongly resembles dentinogenesis imperfect type Il [137].

BSP (bone sialoprotein) is a glycoprotein in which carbohy-
drates make up about 50% of its MM, while the MM of the core
protein is 33-34 kDa. The proportion of BSP in the MM of noncol-
lagenous dentin proteins is ~1% [29]. BSP was shown to initiate in
vitro crystallization, as achieved due to sufficient phosphorylation
and the presence of sites bonding crystalline surfaces (faces) to
each other [4].

OPN (osteopontin) is a partially phosphorylated ~34 kDa gly-
coprotein with a polyaspartate chain and phosphorylated Ser/Thr
sites which mediate bonding of HAP crystals. OPN was demon-
strated to be involved in inflammatory processes [113]. In OPN
gene knockout mice, no changes in the dentin structure have

been revealed. Also, the role of OPN in dentinogenesis still re-
mains understudied. In in vitro experiments, it was shown that
OPN with different degree of phosphorylation can be both an in-
hibitor and promoter of biomineralization [31].

MEPE (matrix extracellular phosphoglycoprotein). Expe-
riments on MEPE gene knockout mice demonstrated that sup-
pression of MEPE molecule secretion leads to matrix hypermine-
ralization. Apparently, MEPE is an inhibitor of biomineralization. In
in vivo experiments, the central fragment of the MEPE molecule
(dentoin) was shown to participate in differentiation of dental pulp
cells into odontocytes [14]. MEPE gene mutation causes X-asso-
ciated hypophosphatemic rickets. In MEPE mutant mice, dentin
shows intraglobular cavities that accumulate ECM molecules,
while under normal conditions these molecules are diffusely dis-
tributed throughout dentin [15].

Dentin matrix proteases

MMPs (matrix metalloproteases) compose a group of calci-
um-dependent zinc-containing endopeptidases involved mainly in
the development and remodeling of the ECM due to their ability
to break down organic molecules. All known 23 forms of MMPs
share the following structure [83]: they represent a signaling pep-
tide containing a propeptide domain with a cysteine residue and a
catalytic domain with a zinc-binding motif, as well as a C-terminal
fragment resembling the hemopexin molecule. Dentin contains
the following MMPs:

1) MMP2 (gelatinase A) — substrates: C-terminal telopeptide,

denatured collagen, decorin;

2) MMP3 (stromelysin 1) — substrates: proteoglycans and

other noncollagenous proteins;

3) MMP9 (gelatinase B) — substrates: C-terminal telopeptide,

denatured collagen, decorin;

4) MMP8 (neutrophil collagenase) — substrate: helical por-

tion of type | collagen;

5) MMP20 (enamelysin) — substrates: DSPP, amelogenin.

MMPs are synthesized in odontoblasts and secreted as pro-
enzymes to the ECM where they are activated by other proteases,
low pH [87], or some other agents, including reactive oxygen spe-
cies. During odontogenesis, activity of MMPs is regulated by tissue
inhibitors of metalloproteases (TIMPS), resulting in the attaining in
the ECM an optimal balance between matrix biomineralization and
matrix destruction [84]. Activity of MMPs is minimum during matrix
assembly and increases when waste organic fragments of proteins
and proteoglycans are to be eliminated from the ECM.

MMPs are involved in the pathogenesis of caries. After ulti-
mate mineralization, the dentin ECM still harbors some residual
inactive proforms of MMPs. Carious infection is accompanied by a
decreasing pH which activates MMPs, including those disrupting
type | collagen. This process leads to a slow destruction of dentin
and deeper invasion of pathogenic microorganisms [72].

TIMPs (tissue inhibitors of metalloproteases) are specific
protein agents that are expressed at the formative and remodeling
stages of the tissue genesis. In vertebrates, four types of TIMPs
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are described (TIMP1-4). All of them contain the N- and C-ter-
minal domains. The N-terminal fragment provides a substrate-
specific interaction of the molecule with the MMP’s active center,
thus terminating the proteolytic activity [24, 80, 128].

Cysteine cathepsins make up another group of endopepti-
dases also responsible for disrupting and remodeling the ECM.
The following types of cysteine cathepsins dominate in dentin:

1) cathepisin B — substrates: type | collagen, terminal N- and

C-telopeptides, some fragments of collagen chains; cari-
ous teeth was shown to have elevated CTSB levels [86];
2) cathepsin D — substrate: proteoglycans;
3) cathepsin K — substrates: type | collagen, terminal N-
and C-telopeptides and some fragments of collagen chains
(3, 122].

CEMENTUM PROTEINS

Cementum is a mineralized dental tissue structurally resem-
bling bone tissue and covering dentin in the dental root. Together
with the periodontium, cementum holds teeth in the alveolar bone
and forms a protective layer separating root dentin from surroun-
ding tissues.

Forty-five or fifty percent of the total MM of cementum are
made up of HAP crystals, while the organic component (50%) is
represented by type | collagen (90%) and noncollagenous ma-
trix proteins. Other types of collagen are represented in smaller
amounts, e.g., type Ill collagen is revealed at the odontogenetic
stage or during reparative processes [33, 120].

Cementum protein fibers are subdivided into (a) the extrinsic
or Sharpey’s fibers deriving from the periodontium and arranged
perpendicular to the root surface, and (b) the cementum’s own fi-
bers. Cementum is subdivided into cellular, acellular and interme-
diate. Acellular cementum covers the dental root as a thin layer.
Cellular cementum contains cementocytes and covers exclusively
root apices. Intermediate cementum is located in area of the ce-
mentum-enamel junction [37, 38].

Osteopontin (OPN) and bone sialoprotein (BSP) are non-
collagenous proteins that perform similar functions in cementum.
These highly phosphorylated proteins are nucleators and regula-
tors of HAP crystal growth. Presumably, OPN and BSP are re-
quired for the initiation of crystallogenesis on mature type | col-
lagen chains [100].

Both proteins contain acidic poly(amino acid) domains (polyas-
partate in OPN and two polyglutamine domains in BSP) that pro-
mote calcium binding to crystal surfaces. Acidic arginine-glycine-
aspartate sequences (RGD motifs) of these proteins serve as cell
aggregation mediators [89, 113]. In in vitro experiments, it was
proved that BSP can “stick together” growing HAP crystals, acting
as a nucleator [52]. Localization of BSP and OPN on the surface of
cementocytes during cementogenesis indicates their role in chemo-
taxis, cell-cell adhesion and differentiation of cementocytes [67-69].

Experiments on BSP gene shutdown in mice demonstrated
a prime importance of this protein in the formation of acellular
cementum. The mutant phenotype was characterized by multiple

defects of the cementum structure, low degree of mineralization,
and considerable thinning of the acellular cementum layer up to
its complete disappearance [25].

Gla-containing proteins (or gamma-carboxyglutamate-
containing proteins) are represented in cementum mainly by
a vitamin K-dependent matrix gamma-carboxyglutamic protein
(MGP) and osteocalcin.

Both of these proteins are secreted by cells of dense tissues
(bone, dentin, cementum) into the ECM where they regulate the
process of crystallization, as supported in particular by morpho-
logical alterations in acellular cementum in mice with relevant
gene knockouts [55].

Based on the observed hypercalcification of the aorta and car-
diac valves, it can be inferred that osteocalcin and MGP function
as crystallization inhibitors. Osteocalcin was shown to inhibit the
transformation of a phosphate mineral brushite into HAP [41, 66,
81, 93].

Osteonectin (ON) is an acidic protein of mineralized tissues,
including dentin and cementum. In the latter, ON is secreted by
cementocytes [99]. Based on the decelerated growth of HAP crys-
tals in the presence of ON, as observed in vitro, it was suggested
that this protein plays an inhibitory role in biomineralization [74].

Alkaline phosphatase (AP) is a nonspecific tissue hydrolase
enzyme transcribed from several genes, including h2q37 [97].
AP exhibits an enzymatic activity toward the phosphate groups
at pH 8 and also inhibits pyrophosphatase and ATPase at neutral
pH. As in other tissues, AP is involved in proliferation of cemen-
tocytes [51, 133], phosphate metabolism and cementogenesis [8,
9, 36]. A special role of AP in the latter process is indicated by the
phenotype of AP gene knockout mice. The relevant morphologi-
cal alterations include a reduced layer of acellular cementum with
numerous spot-like inclusions of atypical cementum around the
attachment sites of the extrinsic Sharpey’s fibers. In humans, mu-
tation in the AP gene is associated with hypophosphatasia, and
its specific phenotype is distinguished from that of the knockout
mice by aplasia of the entire cementum, not only its acellular layer
[126, 127]. A considerable role of AP in cementogenesis may re-
late to pyrophosphate hydrolysis which inhibits HAP crystalliza-
tion [42, 88, 121].

ABBREVIATIONS

Al — amelogenesis imperfecta

AP — alkaline phosphatase

BSP — bone sialoprotein

CTSB — cysteine cathepsin B

CTSC — cathepsin C

CTSD — cysteine cathepsin D

CTSK — cysteine cathepsin K

CTSs — cysteine cathepsins (B, D and K)

DGP — dentin glycoprotein (DSPP)

DMP1 — dentin matrix protein 1

DPP — dentin phosphoprotein, phosphophoryn (C-terminal
DSPP fragment)
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DSP — dentin sialoprotein (N-terminal DSPP fragment)

DSPP — dentin sialophosphoprotein (DSP, DGP and DPP
precursor)

ECM — extracellular matrix

EMSP1 — enamel matrix serine protease 1 (current name:
KLK4)

HAP — hydroxyapatite

ITD — intratubular dentin

KLK4 — kallikrein 4 (former name: EMSP1)

MEPE — matrix extracellular phosphoglycoprotein

MGP — matrix Gla protein

MM — molecular mass

MMP2 — matrix matelloprotease 2

MMP3 — matrix matelloprotease 3

MMP8 — matrix matelloprotease 8

MMP9 — matrix matelloprotease 9

MMP20 — matrix matelloprotease 20

MMPs — matrix matelloproteases (2, 3, 8, 9 and 20)

ON — osteonectin

OPN — osteopontin

PP — phosphophoryn (product of C-terminal DSPP fragment)

PTD — peritubular dentin

SCPP — secretory Ca-binding phosphoprotein

SIBLINGs — small integrin-binding ligand N-linked glycopro-
teins

TIMP1 — tissue inhibitor of metalloproteases 1

TIMP2 — tissue inhibitor of metalloproteases 2

TIMP3 — tissue inhibitor of metalloproteases 3

TIMP4 — tissue inhibitor of metalloproteases 4

TIMPs — tissue inhibitors of metalloproteases (1-4)
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