ОРИГИНАЛЬНЫЕ CTATЬИ FORIGINAL PAPERS DOI: 10.56871/RBR.2024.63.31.001 УДК [616.2+616.34]-036.21+578.834.1+579.8+577.112+547.96 # СТРУКТУРНЫЕ БЕЛКИ ДЕЛЬТА-ВАРИАНТА SARS COV-2: ГОМОЛОГИЯ С ОППОРТУНИСТИЧЕСКИМИ БАКТЕРИЯМИ © Александр Тимурович Марьянович¹, Дмитрий Юрьевич Кормилец² 1 Северо-Западный государственный медицинский университет им. И.И. Мечникова. 195067, г. Санкт-Петербург, Пискаревский пр., 47 ² Военно-медицинская академия им. С.М. Кирова. 194044, Российская Федерация, г. Санкт-Петербург, ул. Академика Лебедева, 6 Контактная информация: Александр Тимурович Марьянович — д.б.н., профессор, заведующий кафедрой нормальной физиологии. E-mail: atm52@mail.ru ORCID: https://orcid.org/0000-0001-7482-3403 SPIN: 5957-2347 Для цитирования: Марьянович А.Т., Кормилец Д.Ю. Структурные белки дельта-варианта SARS CoV-2: гомология с оппортунистическими бактериями // Российские биомедицинские исследования. 2024. Т. 9. № 2. С. 5–17. DOI: https://doi.org/10.56871/RBR.2024.63.31.001 Поступила: 15.02.2024 Одобрена: 04.04.2024 Принята к печати: 20.05.2024 Резюме. Способность SARS CoV-2 уклоняться от иммунного ответа можно считать общепризнанной. Гомология белков коронавируса и человека может быть одним из механизмов иммунного уклонения. Дельта-вариант обязательно имеет структурные особенности, которые объясняют его специфические свойства. Целью нашего исследования было выяснить, изменяют ли мутации, произошедшие в структурных белках дельта-варианта, его гомологию с белками, присутствующими в организме человека, то есть собственно человеческими, бактериальными и пищевыми. Используя инструменты биоинформатики, мы обнаружили гомологию на уровне гептамеров между структурными белками дельта-варианта и белками человека, а также белками некоторых условно-патогенных бактерий верхних дыхательных путей, легких и кишечника. Белки шиповый (S) и мембранный (М) дельта-варианта имеют большое количество сходств (гомологичных соответствий) с перечисленными белками, причем наибольшее количество — в случае мутации S:Δ156,157;R158G. Причина, по которой дельтавариант SARS CoV-2 обладает специфическими характеристиками, и прежде всего повышенной летальностью, скорее всего, кроется в мутации в положениях 156-158 шипового белка. Ключевые слова: SARS CoV-2, дельта-вариант, шиповидный белок, оппортунистические бактерии, гомология # SARS COV-2 DELTA VARIANT STRUCTURAL PROTEINS: HOMOLOGY WITH OPPORTUNISTIC BACTERIA © Alexander T. Maryanovich¹, Dmitry Yu. Kormilets² ¹ North-Western State Medical University named after I.I. Mechnikov. 47 Piskarevskiy ave., Saint Petersburg 195067 Russian Federation Contact information: Alexander T. Maryanovich — Ph.D., D.Sc. (Biology), Professor, Head of Department of Normal Physiology. E-mail: atm52@mail.ru For citation: Maryanovich AT, Kormilets DYu. SARS CoV-2 Delta variant structural proteins: homology with opportunistic bacteria. Russian Biomedical Research. 2024;9(2):5-17. DOI: https://doi.org/10.56871/RBR.2024.63.31.001 Received: 15.02.2024 Revised: 04.04.2024 Accepted: 20.05.2024 Abstract. The capacity of SARS CoV-2 for immune evasion can be considered universally recognized. Coronavirus and human protein homology may be one of the mechanisms of immune evasion. Delta variant necessarily has structural features that explain its specific qualities. The aim of our study is to find out whether mutations in the structural proteins of Delta variant change its homology with proteins present in the human body, i.e. human, bacterial and dietary. Using ² Military Medical Academy named after S.M. Kirov. 6 Akademician Lebedev str., 194044 Saint Petersburg Russian Federation bioinformatics tools we detected homology on the heptamer level between Delta variant structural proteins and human proteins as well as some opportunistic bacteria proteins of the upper respiratory tract, lung and gut. Delta variant spike (S) and membrane (M) proteins have a large number of similarities (homologous correspondences) with the listed proteins, with the S:Δ156,157;R158G mutation having the greatest amount. The reason why SARS CoV-2 Delta variant has specific characteristics, most importantly increased lethality, is most likely to be found in a mutation at positions 156-158 of spike protein. **Keywords:** SARS CoV-2, Delta variant, spike protein, opportunistic bacteria, homology #### INTRODUCTION After a series of brilliant discoveries from Pasteur to Fleming and Waxman, mankind has learned to control most bacterial infections. Humans were able to create megalopolises with huge population densities. In response, nature had to put forward other limiting mechanisms less humanly controllable. The COVID-19 pandemic has become and will remain one of humanity's major concerns for the near future. The very important guestion is why and how this CoV could cause a pandemic [1]. Some mutation-induced structural substitutions in the N-terminal domain (NTD) of the SARS-CoV-2 S-protein lead to more efficient first contact and interaction with the upper airway epithelium [2]. The extraordinary virulence of Omicron variant (B.1.1.529) is now the main focus of researchers [3]. Nevertheless, it seems to us that in order to understand the causes of SARS CoV-2 Iethality, the peculiarities of *Delta* variant (B.1.617.2) must be studied. Using 3D models, the researchers can determine how the spike (S) protein binds to the ACE2 receptor [4]. The peculiarity of our approach is that we seek an explanation for the properties of coronavirus in the homology (commonality of short motifs) of virus proteins with human proteins. Recently we described dozens of homologous motifs in the primary structure of SARS CoV-2 and human proteins including proteins of olfactory and taste receptors [5]. Through mutations, the virus finds a way to avoid an immune response [6]. Molecular mimicry is considered a strategy used by many viruses to subvert and regulate antiviral immunity. For example, human cytomegalovirus has hijacked or developed a number of homologous sites that mimic immunomodulatory proteins encoded by the human body. These homologues encoded by the virus can contribute to the virus' evasion of immune clearance [7]. Following Joshua Lederberg's principle [8], we took into account not only proteins synthesized by the human body, but also those that originate from other genotypes and are constantly present in the macroorganism. These are the proteins of commensal and opportunistic bacteria of the upper respiratory tract, lung, oral cavity, and GI tract. We also analyzed the most common dietary proteins that are almost constantly present in the gut, namely those of the six world's most important cereal crops, i.e., Asian rice Oryza sativa, common wheat Triticum aestivum, maize Zea mays, common bean Phaseolus vulgaris, barley Hordeum vulgare, and sorghum Sorghum bicolor. We believed that the homology of the virus proteins with those of the named bacteria and cereals helps coronavirus to avoid or reduce the primary immune response. #### THE AIM OF OUR STUDY The aim of our study is to find out whether mutations in the structural proteins of SARS CoV-2 Delta variant change its homology with proteins present in the human body, i.e. human, bacterial and dietary. #### **RESULTS** #### Spike glycoprotein Wuhan-Hu spike glycoprotein (S protein) molecule consists of 1273 amino acid residues. In Delta variant, as a result of two deletions ($E_{156}\Delta$ and $F_{157}\Delta$), S protein consists of 1271 amino acid residues and contains seven substitutions in nine positions, namely $T_{19}R$, $G_{142}D$, $R_{158}G$, $L_{452}R$, $T_{478}K$, $P_{681}H$, and $D_{950}N$, numeration as in Wuhan-Hu variant [9]. S protein Delta variant, 1271 aa MFVFLVLLPLVSSQCVNLRTRTQLPPAYTNSFTRGVYYP DKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGT KRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQ **SLLIVNN**ATNVVIKVCEFQFCNDPFLDVYYHKNNKSWMES GVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREF **VFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINI** TRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSN **FRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRIS** NCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSF **VIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWN**SNNLD skvggnynyRyrlfrksnlkpferdisteiyqags**K**pcng **VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPAT** **VCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQF** GRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQ VAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGC LIGAEHVNNSYECDIPIGAGICASYQTQTNSRRRARSVAS QSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTK TSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQD KNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRS FIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFN **GLTVLPPLLTD**EMIAQYTSALLAGTITSGWTFGAGAA LQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIG KIQDSLSSTASALGKLQNVVNQNAQALNTLVKQLSS NFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSL QTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDF CGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAI CHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNT **FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKN HTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNES** LIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCC MTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT Hereinafter, motifs homologous with human proteins [5] are highlighted in red font. Amino acid residues substituted as a result of mutations are highlighted in large letters. The N- S protein heptamer sPrrars₆₈₀₋₆₈₆* Mutation P₆₈₁H terminal domain (NTD₁₄₋₃₀₃) is highlighted in green. Receptorbinding domain (RBD₃₁₇₋₅₃₉) is in gray italics. Receptor-binding motif $RBM_{436-506}$ is underlined. Heptapeptide repeat sequence 1 (HR1₉₁₀₋₉₈₂) is highlighted in blue. As a result of the double deletion $\Delta_{156,157}$, starting from G_{156} , the numbering of positions in Delta variant does not correspond to the numbering in Wuhan-Hu. Delta variant, as mentioned above, has a mutation S:P₆₈₁H. The S protein motif SPRRARS₆₈₀₋₆₈₆ homologous with a human protein has been replaced by a heptamer SHRRARS₆₇₈₋₆₈₄, which has no homologues in mammals (Table 1). Table 1 in commensal Homology of a SARS CoV-2 S protein to a human protein
Wuhan-Hu Delta **Species** Homologous protein S protein heptamer Species Homologous heptamer protein heptamer Homo Hermansky-Pudlak syndrome sHrrars₆₇₈₋₆₈₄ No homological heptamers 1 protein₂₅₈₋₂₆₄ sapiens The heptamers of S protein that are homologous with the proteins of some commensal and opportunistic bacteria are listed in Table 2. Table 2 The heptamers of S protein homologous with the proteins of some commensal and opportunistic bacteria | | | Wuhan- | Hu | | | Delta | а | | |------------------------|----------------------------|---|---|--------------------------------|----------------------------|--|---|---| | Mutation | S protein
heptamer | Species | Homologous
protein
heptamer | Localization in the human body | S protein
heptamer | Species | Homologous protein heptamer | Localization
in the hu-
man body | | T ₁₉ R | VNLTTRT ₁₆₋₂₂ | Escherichia coli
BCE011_MS-01 | Uncharacte-
rized protein ₂₃₋₂₉ | gut | VNLRTRT ₁₆₋₂₂ | Streptococcus
mitis SK597 TnpX;
Streptococcus
salivarius (strain
CCHSS3) | Site-specific re-
combinase ₂₇₅₋₂₈₁ | nasopha-
rynx, oral
cavity,
throat | | | NLTTRTQ ₁₇₋₂₃ | Enterococcus
faecalis | Helicase,
RecD/TraA
family ₇₅₅₋₇₆₁ | gut | NLRTRTQ ₁₇₋₂₃ | Subdoligranulum
variabile | Putative hydro-
lase ₃₄₋₄₀ | gut | | G ₁₄₂ D* | NDPFLGV ₁₃₇₋₁₄₃ | No homological heptamers in commensal or opportunistic bacteria | | | NDPFLDV ₁₃₇₋₁₄₃ | Pasteurella
multocida subsp.
multocida str | Release factor
glutamine methyl-
transferase ₂₀₋₂₆ | lung | | Δ156,
157;
R158G | EFRVYSS ₁₅₆₋₁₆₂ | No homological heptamers in commensal or opportunistic bacteria | | | ESGVYSS ₁₅₄₋₁₆₀ | Lachnospira-
ceae bacterium
7_1_58FAA | Uncharacterized protein ₁₂₆₋₁₃₂ | gut | | | | | | | | Escherichia coli
UMEA 3609-1 | Valine–tRNA
ligase ₃₂₀₋₃₂₆ | gut | | | FRVYSSA ₁₅₇₋₁₆₃ | _ | cal heptamers in co
pportunistic bacteri | | sGvyssA ₁₅₅₋₁₆₁ | Fusobacterium sp.
oral taxon 370 str.
F0437 | Hep/Hag repeat
protein (Frag-
ment) ₄₇₋₅₃ | oral cavity | | | Rvyssan ₁₅₈₋₁₆₄ | Bifidobacterium
animalis subsp.
lactis CNCM
I-2494 | Fibronectin-
binding
protein ₁₉₁₋₁₉₇ | gut | GVYSSAN ₁₅₆₋₁₆₂ | Bacillus sp. NRRL
B-14911 | Methylmalonyl-CoA
mutase ₅₆₅₋₅₇₁ | ? | ^{*}In Wuhan-Hu and Delta variants, the position numbering differs after position 156 as a result of the Δ156,157 deletions. #### Endind of the table 2 | | | Wuhan-l | Hu | | | Delta | a | | |---------------------|----------------------------|--|--|--------------------------------|-------------------------------------|---|--|--| | Mutation | S protein
heptamer | Species | Homologous
protein
heptamer | Localization in the human body | S protein
heptamer | Species | Homologous protein heptamer | Localization
in the hu-
man body | | | | | | | | Lactobacillus far-
raginis JCM 14108 | D-alanyl-D-alanine
carboxypepti-
dase ₁₄₉₋₁₅₅ | gut | | | | | | | | Fusobacterium
nucleatum subsp.
polymorphum
F0401 | Uncharacterized
protein ₂₃₄₋₂₄₀ | oral cavity | | | | | | | | Prevotella saccha-
rolytica F0055 | Carbohydrate
binding domain
protein ₇₁₅₋₇₂₁ | oral cav-
ity, upper
respiratory
tract, gut | | | | | | | | human gut metage-
nome | Glycoside hydro-
lase, family 25
(Fragment) ₃₉₅₋₄₀₁ | gut | | L ₄₅₂ R | | | No homologica | I heptamers in co | ommensal or oppor | tunistic bacteria | | | | T ₄₇₈ K* | | | No homologica | I heptamers in co | ommensal or oppor | tunistic bacteria | | | | P ₆₈₁ H* | NSPRRAR ₆₇₉₋₆₈₅ | | heptamers in comr
ortunistic bacteria | nensal or op- | NSHRRAR ₆₇₇₋₆₈₃ | Clostridium
clostridioforme | Uncharacterized protein ₁₁₆₋₁₂₂ | gut | | | | | | | | | | | | D ₉₅₀ N* | klqDvvn ₉₄₇₋₉₅₃ | Prevotella
salivae F0493 | Peptidase M16 inactive domain protein ₉₁₈₋₉₂₄ | oral cavity,
gut | kla N vvn ₉₄₅₋₉₅₁ | Leptotrichia buc-
calis (strain ATCC
14201 / DSM 1135
/ JCM 12969 /
NCTC 10249) | GCN5-related
N-acetyltrans-
ferase ₁₁₅₋₁₂₁ | oral cavity | | | Dvvnqna ₉₅₀₋₉₅₆ | No homological heptamers in commensal or op-
portunistic bacteria | | | Nvvnqna ₉₄₈₋₉₅₄ | Prevotella
multisaccharivorax
DSM 17128 | Anaerobic
ribonucleoside-
triphosphate
reductase ₁₁₄₋₁₂₀ | oral cavity,
gut | ^{*}The same mutation has occurred in Omicron variant. The heptamers of S protein that are homologous with the most common cereal proteins are listed in Table 3. Table 3 The heptamers of S protein homologous with the most common cereal proteins | | | | tom nomorogodo with ti | | | | | |--------------------|----------------------------|-------------------------------|--|----------------------------|------------------------------|-----------------------------|--| | | | Wuhan-Hu | | Delta | | | | | Mutation | S protein heptamer | Species | Homologous protein heptamer | S protein heptamer | Species | Homologous protein heptamer | | | T ₁₉ R | SQCVNLT ₁₃₋₁₉ | Oryza sativa | Leucine Rich Repeat family protein, expressed ₅₂₀₋₅₂₆ | SQCVNLR ₁₃₋₁₉ | No most common cereal sample | | | | | VNLTTRT ₁₆₋₂₂ | Oryza sativa
BCE011_MS-01 | Uncharacterized protein ₂₃₋₂₉ | VNLRTRT ₁₆₋₂₂ | No most common cereal sample | | | | | LTTRTQL ₁₈₋₂₄ | Triticum
aestivum | Uncharacterized protein ₈₈₈₋₈₉₄ | LRTRTQL ₁₈₋₂₄ | No most co | ommon cereal sample | | | L ₄₅₂ R | LYRLFRK ₄₅₂₋₄₅₈ | Oryza sativa
subsp. indica | Putative uncharacterized protein ₁₅₇₋₁₆₃ | Ryrlfrk ₄₅₀₋₄₅₆ | No most common cereal sample | | | | | | Zea mays | Putative NAC domain transcription factor superfamily protein (Fragment) ₁₀₀₋₁₀₆ | | | | | #### Endind of the table 3 | | | Wuhan-Hu | | Delta | | | | | |---------------------|---|---------------------------------|---|--------------------------------|---------------------------------|--|--|--| | Mutation | S protein heptamer | Species | Homologous protein heptamer | S protein heptamer | Species | Homologous protein heptamer | | | | T ₄₇₈ K* | sTpcngv ₄₇₇₋₄₈₃ | No most co | No most common cereal sample | | Phaseolus
vulgaris | Uncharacterized protein ₅₉₋₆₅ | | | | | sPrrars ₆₈₀₋₆₈₆ | Oryza sativa
subsp. japonica | Os02g0817400 protein
(Fragment) ₁₋₇ | sHrrars ₆₇₈₋₆₈₄ | Oryza sativa
subsp. japonica | Expressed protein ₂₉₆₋₃₀₂ | | | | | | Zea mays | Uncharacterized pro-
tein ₅₈₋₆₄ | | Oryza sativa
subsp. japonica | Uncharacterized protein ₆₁₆₋₆₂₂ | | | | | | | | | Hordeum
vulgare | Predicted protein
(Fragment) ₁₆₋₂₂ | | | | | PRRARSV ₆₈₁₋₆₈₇ Oryza sativa subsp. japonica | | Putative uncharacterized protein ₁₁₈₋₁₂₄ | $H_{RRARSV_{679-685}}$ | No most co | mmon cereal sample | | | | | | Zea mays | Uncharacterized protein ₉₄₋₁₀₀ | | | | | | | D ₉₅₀ N* | algklqD ₈₄₄₋₉₅₀ | Hordeum vulgare var. distichum | Uncharacterized pro-
tein ₁₂₃₋₁₂₉ | $ALGKLQ N_{_{842\text{-}848}}$ | No most commoncereal sample | | | | | | LGKLQDV ₉₄₅₋₉₅₁ | Hordeum vulgare var. distichum | Uncharacterized protein ₉₆₋₁₀₂ | $LGKLQ NV_{843-849}$ | No most common cereal same | | | | | | | Oryza sativa
subsp. indica | Uncharacterized pro-
tein ₂₄₈₋₂₅₄ | | | | | | | | | Zea mays | Protein lap4 ₂₃₃₋₂₃₉ | | | | | | | | | | Golgi SNAP receptor complex member 1 ₇₅₋₈₁ | | | | | | | | GKLQDVV ₉₄₆₋₉₅₂ Zea mays | | Uncharacterized pro-
tein ₃₈₈₋₃₉₄ | $GKLQ N VV_{844-850}$ | No most common cereal sample | | | | ^{*}The same mutation has occurred in Omicron variant. The heptamers of S protein that are homologous with some virus proteins are listed in Table 4. # The heptamers of S protein homologous with some virus proteins | | | Wuhan-l | Hu | Delta | | | Comment | | |---------------------|----------------------------|--|------------------------------------|----------------------------|--|---|---|--| | Mutation | S protein
heptamer | Other virus | Homologous protein
heptamer | S protein hep-
tamer | Other viruses | Homologous protein hep-tamer | | | | P ₆₈₁ H | QTQTNSP ₆₇₅₋₆₈₁ | Human
immunodefi-
ciency virus 1 | Protease (Fragment) ₂₋₇ | QTQTNSH ₆₇₃₋₆₇₉ | No virus proteins homology | | Homology with
HIV-1 has disap-
peared | | | D ₉₅₀ N* | LQDVVNQ ₉₄₈₋₉₅₄ | No virus proteins homology | | LQNVVNQ ₉₄₆₋₉₅₂ | Human im-
munodeficiency
virus 1 | Envelope
glycoprotein
(Fragment) ₇₁₋₇₇ | Homology with HIV-1 has appeared | | ^{*} The same mutation has occurred in Omicron variant. # Membrane protein There are four mutations known in the membrane (M) protein Delta variant, namely A $_2$ S, F $_{28}$ L, V $_{70}$ L, and I $_{82}$ T [10]. M protein Delta variant, 222 aa MSDSNGTITVEELKKLLEQWNLVIGFLLLTWICLLQFAYANR NRFLYIIKLIFLWLLWPVTLACFVLAALYRINWITGGIATAMACLV Table 4 GLMWLSYFIASFRLFARTRSMWSFNPETNILLNVPLHGTILTRP **LLESELV**IGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSRTLSY YKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSDNIALLVQ The heptamers of M protein that are homologous with the proteins of the commensal and opportunistic bacteria are listed in
Table 5. Table 5 The heptamers of M protein homologous with the proteins of the commensal and opportunistic bacteria | | 1 | | | | | | | | |-------------------|-------------------------------------|--|---|--------------------------------|----------------------------|--|--|--------------------------------| | | | Wuh | nan-Hu | | | De | elta | | | Mutation | M protein heptamer | Species | Homologous protein heptamer | Localization in the human body | M protein heptamer | Species | Homologous protein heptamer | Localization in the human body | | A ₂ S | MADSNGT ₁₋₇ | No homological hepta | mers in commensal or oppor | rtunistic bacteria | MSDSNGT ₁₋₇ | | gical heptamers in commer
opportunistic bacteria | nsal | | | ADSNGTI ₂₋₈ | Lachnospiraceae
bacterium
7_1_58FAA | Uncharacterized protein ₂₅₂₋₂₅₈ | gut | SDSNGTI ₂₋₈ | . ui | opporturiistic bacteria | | | F ₂₈ L | LVIGFLF ₂₂₋₂₈ | Enterococcus
faecalis R508 | Putative ferrichrome
transport system
permease protein
FhuG ₂₀₃₋₂₀₆ | gut | LVIGFLL ₂₂₋₂₈ | Eubacterium
ventriosum ATCC
27560 | Putative K(+)-stimulated
pyrophosphate-
energized sodium
pump ₅₇₃₋₅₇₉ | gut | | | | | | | | Enterococcus caccae
ATCC BAA-1240 | Uncharacterized protein | gut | | | | | | | | Faecalibacterium sp.
CAG:74 | Binding-protein-
dependent
transport systems
inner membrane
component ₈₆₋₉₂ | gut | | | | | | | | Prevotella histicola
F0411 | Uncharacterized protein | gut | | | | | | | | Lachnospiraceae
bacterium 2_1_58FAA | Uncharacterized protein ₆₅₋₇₁ | gut | | | | | | | | Escherichia coli ISC11 | Putative cell envelope opacity-associated protein A ₄₂₋₄₈ | gut | | | VIGFLFL ₂₃₋₂₉ | Enterococcus
flavescens ATCC
49996 | Uncharacterized protein ₁₂₈₋₁₃₄ | gut | VIGFLLL ₂₃₋₂₉ | Prevotella sp. oral
taxon 472 str. F0295 | Uncharacterized
protein ₁₇₈₋₁₈₄ | gut | | | | Lachnospiraceae bacterium COE1 MATE efflux family protein112-118 | MATE efflux family protein112-118 | gut | | Lactobacillus brevis
ATCC 14869 = DSM
20054 | Potassium uptake
protein, TrkH
family ₂₃₉₋₂₄₅ | gut | | | | | | | | Lactobacillus antri
DSM 16041 | Transporter, major
facilitator family
protein ₄₂₂₋₄₂₈ | gut | | | | | | | | Enterobacter cloacae
subsp. cloacae (strain
ATCC 13047 / DSM
30054 / NBRC 13535 /
NCDC 279-56) | Putative multidrug
resistance protein
MdtD ₁₈₃₋₁₈₉ | gut | | | | | | | | Lachnospiraceae
bacterium 28-4 | Uncharacterized protein ₁₈₋₂₄ | gut | | | IGFLF _{LT₂₄₋₃₀} | Lachnospiraceae
bacterium
CAG:215 | Transporter ₄₆₈₋₄₇₄ | gut | IGFLLLT ₂₄₋₃₀ | Lactobacillus paracasei
subsp. paracasei
Lpp126 | Oligopeptide transport
system permease
protein oppB ₉₋₁₅ | oral cavity | | | | | | | | Eubacterium nodatum
ATCC 33099 | TIGR02185 family protein ₄₃₋₄₉ | oral cavity | | | | | | | | Bacteroides uniformis
dnLKV2 | Uncharacterized protein ₇₃₇₋₇₄₃ | gut | | | | | | | | Escherichia coli
2845650 | Uncharacterized protein ₁₃₋₁₉ | gut | | | | | | | Prevotella sp.
CAG:1320 | Putative thiol:disulfide interchange protein DsbD ₈₋₁₄ | gut | | | | | | | | | Enterococcus faecalis
06-MB-DW-09 | Putative
transmembrane
permease MsmF ₁₆₋₂₂ | gut | | | GFLFLTW ₂₅₋₃₁ | No homological hepta | mers in commensal or oppo | rtunistic bacteria | GFLLTW ₂₅₋₃₁ | No homological heptam | ers in commensal or oppo | rtunistic bacteria | # Endind of the table 5 | | | Wuh | nan-Hu | | Delta | | | | | |-------------------|--------------------------|---|--|---|--|---|--|-------------------------------------|--| | Mutation | M protein
heptamer | Species | Homologous protein heptamer | Localization in the human body | M protein
heptamer | Species | Homologous protein heptamer | Localization in the human body | | | | FLFLTWI ₂₆₋₃₂ | No homological hepta | mers in commensal or oppor | rtunistic bacteria | FLLTWI ₂₆₋₃₂ | No homological heptam | ers in commensal or oppo | rtunistic bacteria | | | | LFLTWIC ₂₇₋₃₃ | No homological hepta | mers in commensal or oppor | rtunistic bacteria | LLTWIC ₂₇₋₃₃ | Peptoniphilus sp. oral
taxon 375 str. F0436 | Na+/H+ antiporter
family protein ₁₀₅₋₁₁₁ | gut | | | | FLTWICL ₂₈₋₃₄ | No homological hepta | mers in commensal or oppor | rtunistic bacteria | LITWICL ₂₈₋₃₄ | No homological heptamers in commensal or opportunistic bacte | | | | | V ₇₀ L | CFVLAAV ₆₄₋₇₀ | Enterobacter sp. Ag1 | Formate dehydrogenase-O subunit gamma ₂₄₋₃₀ | gut | CFVLAAL 64-70 | No homological heptam | ers in commensal or oppo | rtunistic bacteria | | | | FVLAAVY ₆₅₋₇₁ | No homological hepta | imers in commensal or oppor | rtunistic bacteria | FVLAALY ₆₅₋₇₁ | Bacteroides dorei
CL03T12C01 | HAD hydrolase, family IA ₃₄₄₋₃₅₀ | gut | | | | VLAAVYR ₆₆₋₇₂ | No homological hepta | mers in commensal or oppor | VLAALYR ₆₆₋₇₂ | Bificlobacterium
longum subsp. infantis
(strain ATCC 15697
/ DSM 20088 / JCM
1222 / NCTC 11817
/ S12) | Putative ABC transporter permease component ₁₁₀₋₁₁₆ | gut | | | | | | | | | | Haemophilus
parainfluenzae ATCC
33392 | ABC transporter,
permease protein ₁₂₁₋₁₂₇ | upper
respiratory
tract, lung | | | | LAAVYRI ₆₇₋₇₃ | Lachnospiraceae
bacterium
3_1_57FAA_CT1 | Uncharacterized protein ₁₃₀₋₁₃₆ | gut | LAALYRI ₆₇₋₇₃ | Acinetobacter sp. CIP
101966 | Uncharacterized protein ₁₈₋₂₄ | oral cavity | | | | AAVYRIN ₆₈₋₇₄ | Lautropia mirabilis
ATCC 51599 | Selenide, water
dikinase ₅₆₋₆₂ | oral cavity,
upper
respiratory
tract | AALYRIN ₆₈₋₇₄ | Prevotella
melaninogenica (strain
ATCC 25845 / DSM
7089 / JCM 6325
/ VPI 2381 / B282)
GN=HMPREF0659_
A647 | Hydrolase, NUDIX
family ₅₄₋₆₀ | upper
respiratory
tract | | | | | Lachnospiraceae
bacterium JC7 | Diguanylate cyclase
(GGDEF) domain-
containing protein
(Precursor) ₁₁₄₋₁₂₀ | gut | | Lactobacillus ruminis
(strain ATCC 27782
/ RF3) | Conserved hypothetical
YitT family protein | gut | | | | | | (FIECUISOI) ₁₁₄₋₁₂₀ | | | Bacteroides nordii
CL02T12C05 | Uncharacterized protein ₇₀₀₋₇₀₆ | gut | | | | AVYRINW ₆₉₋₇₅ | No homological hepta | imers in commensal or oppor | rtunistic bacteria | ALYRINW ₆₉₋₇₅ | No homological heptam | ers in commensal or oppo | rtunistic bacteria | | | | VYRINWI ₇₀₋₇₆ | No homological hepta | mers in commensal or oppor | rtunistic bacteria | LYRINWI ₇₀₋₇₆ | No homological heptamers in commensal or opportunistic bacter | | | | | I ₈₂ T | ITGGIAI 76-82 | Ruminococcus
obeum ATCC 29174 | Ion channel ₁₄₃₋₁₄₉ | gut | ITGGIAT ₇₆₋₈₂ | Enterococcus faecalis | Dephospho-CoA
kinase ₇₋₁₃ | gut | | | | | Bacteroides sp.
3_1_19 | Putative
uncharacterized
protein ₁₅₈₋₁₆₄ | gut | | Clostridium
asparagiforme DSM
15981 | ABC transporter,
permease
protein ₂₆₈₋₂₇₄ | gut | | | | TGGIA A ₇₇₋₈₃ | No homological he | ptamers in commensal or bacteria | opportunistic | TGGIATA ₇₇₋₈₃ | Veillonella sp. oral
taxon 780 str. F0422 | PrpF protein ₃₁₂₋₃₁₈ | oral cavity | | | | GGIA AM ₇₈₋₈₄ | Enterobacteriaceae
bacterium
9_2_54FAA | Uncharacterized protein ₂₇₀₋₂₇₆ | gut | GGIATAM ₇₈₋₈₄ | No homological hept | tamers in commensal or
bacteria | opportunistic | | | | | Eubacterium sulci
ATCC 35585 | Peptidase, M20/M25/
M40 family ₁₃₆₋₁₄₂ | gut | | | | | | | | | Lactobacillus
brevis subsp.
gravesensis ATCC
27305 | Transporter, major
facilitator family
protein ₄₂₁₋₄₂₇ | gut | | | | | | | | GIAIAMA ₇₉₋₈₅ | Lachnospiraceae
bacterium 10-1 | Uncharacterized protein ₁₄₈₋₁₅₄ | gut | GIATAMA ₇₉₋₈₅ | Enterobacter
aerogenes UCI 48 | Uncharacterized protein ₃₂₀₋₃₂₆ | gut | | | | IAIAMAC ₈₀₋₈₆ | No homological he | ptamers in commensal or bacteria | opportunistic | IATAMAC ₈₀₋₈₆ | No homological hept | tamers in commensal or
bacteria | opportunistic | | | | AIAMACL ₈₁₋₈₇ | No homological he | ptamers in commensal or
bacteria | opportunistic | aTamacl ₈₁₋₈₇ | Lactobacillus
paracasei subsp.
paracasei CNCM
I-4649 | Class II aldolase/
adducin family
protein ₁₀₁₋₁₀₇ | oral cavity,
gut | | | | IAMACLV ₈₂₋₈₈ | No homological he | ptamers in commensal or bacteria | opportunistic | TAMACLV ₈₂₋₈₈ | No homological hept | tamers in commensal or
bacteria | opportunistic | | ^{*}The same mutation has occurred in Omicron variant. # Membrane protein There are four mutations known in the membrane (M) protein Delta variant, namely A₂S, F₂₈L, V₇₀L, and I₈₂T [10]. M protein Delta variant, 222 aa mSdsngtitveelkklleqwnlvigflLtwicllqfayanrn RFLYIIKLIFLWLLWPVTLACFVLAALYRINWITGGIATAMACL VGLMWLSYFIASFRLFARTRSMWSFNPETNILLNVPLHGTILT RPLLESELVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSR TLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSD **NIALLVQ** The heptamers of M protein that are homologous with the proteins of the commensal and opportunistic bacteria are listed Table 6 The heptamers of M protein homologous with the proteins of the commensal and opportunistic bacteria. | | - | Wuhan | ı-Hu | | Delta | | | | | |-------------------|--------------------------|--|--
---|---|--|---|---|--| | Muta-
tion | M protein
heptamer | Species | Homologous protein heptamer | Loca
lization
in the
human
body | M protein
heptamer | Species | Homologous protein
heptamer | Localiza-
tion in the
human
body | | | A ₂ S | MADSNGT ₁₋₇ | | cal heptamers in comme oportunistic bacteria | nsal | MSDSNGT ₁₋₇ | No homologic
or op | cal heptamers in commensa
oportunistic bacteria | | | | | Adsngti ₂₋₈ | Lachnospira-
ceae bacterium
7_1_58FAA | Uncharacterized protein ₂₅₂₋₂₅₈ | gut | SDSNGTI ₂₋₈ | | | | | | F ₂₈ L | LVIGFLF ₂₂₋₂₈ | Enterococcus
faecalis R508 | Putative ferrichrome
transport system
permease protein | gut | LVIGFLL ₂₂₋₂₈ | Eubacterium ventriosum
ATCC 27560 | Putative K(+)-stimulated pyrophosphate-energized sodium pump ₅₇₃₋₅₇₉ | gut | | | | | | FhuG ₂₀₃₋₂₀₆ | | | Enterococcus caccae
ATCC BAA-1240 | Uncharacterized protein ₁₀₄₋₁₁₀ | gut | | | | | | | | Faecalibacterium sp.
CAG:74 | Binding-protein-dependent transport systems inner membrane component 86-92 | gut | | | | | | | | | | Prevotella histicola
F0411 | Uncharacterized protein | gut | | | | | | | | | Lachnospiraceae bacte-
rium 2_1_58FAA | Uncharacterized protein ₆₅₋₇₁ | gut | | | | | | | | | Escherichia coli ISC11 | Putative cell envelope opacity-associated protein A ₄₂₋₄₈ | gut | | | | VIGFLF _{L23-29} | Enterococcus
flavescens ATCC
49996 | Uncharacterized protein ₁₂₈₋₁₃₄ | gut | VIGFLLL ₂₃₋₂₉ | Prevotella sp. oral taxon
472 str. F0295 | Uncharacterized protein ₁₇₈₋₁₈₄ | gut | | | | | Lachnospiraceae bacterium COE1 MATE efflux family protein112-118 | gut | | Lactobacillus brevis
ATCC 14869 = DSM
20054 | Potassium uptake
protein, TrkH
family ₂₃₉₋₂₄₅ | gut | | | | | | | | | | Lactobacillus antri DSM
16041 | Transporter, major facilitator family protein ₄₂₂₋₄₂₈ | gut | | | | | | | | | Enterobacter cloacae
subsp. cloacae (strain
ATCC 13047 / DSM
30054 / NBRC 13535 /
NCDC 279-56) | Putative multidrug resistance protein MdtD ₁₈₃₋₁₈₉ | gut | | | | | | | | | Lachnospiraceae bacte-
rium 28-4 | Uncharacterized pro-
tein ₁₈₋₂₄ | gut | | | | IGFLFLT ₂₄₋₃₀ | Lachnospira-
ceae bacterium
CAG:215 | Transporter ₄₆₈₋₄₇₄ | gut[9 | IGFLLLT ₂₄₋₃₀ | Lactobacillus paraca-
sei subsp. paracasei
Lpp126 | Oligopeptide transport
system permease protein
oppB ₉₋₁₅ | oral cavity | | | | | | | | | Eubacterium nodatum
ATCC 33099 | TIGR02185 family protein ₄₃₋₄₉ | oral cavity | | | | | | | | | Bacteroides uniformis
dnLKV2 | Uncharacterized protein ₇₃₇₋₇₄₃ | gut | | | | | | | | | Escherichia coli
2845650 | Uncharacterized protein ₁₃₋₁₉ | gut | | | | | | | | | Prevotella sp.
CAG:1320 | Putative thiol:disulfide interchange protein DsbD ₈₋₁₄ | gut | | | | | | | | | Enterococcus faecalis
06-MB-DW-09 | Putative transmembrane permease MsmF ₁₆₋₂₂ | gut | | | | GFLFLTW ₂₅₋₃₁ | No homological he | ptamers in commensal o
nistic bacteria | or opportu- | GFLLLTW ₂₅₋₃₁ | No homological heptamer | rs in commensal or opportun | istic bacteria | | # Endind of the table 6 | | | Wuhan | ⊾Hu | | Delta | | | | | | |-------------------|--------------------------|---|--|---|--------------------------|--|---|---|--|--| | Muta-
tion | M protein
heptamer | Species | Homologous protein heptamer | Loca
lization
in the
human
body | M protein
heptamer | Species | Homologous protein
heptamer | Localiza-
tion in the
human
body | | | | | FLFLTWI ₂₆₋₃₂ | No homologic
or or | cal heptamers in comme
oportunistic bacteria | ensal | FLLTWI ₂₆₋₃₂ | No homological heptamer | rs in commensal or opportun | istic bacteria | | | | | LFLTWIC ₂₇₋₃₃ | No homologic | cal heptamers in comme | ensal | LLTWIC ₂₇₋₃₃ | Peptoniphilus sp. oral taxon 375 str. F0436 | Na+/H+ antiporter family protein ₁₀₅₋₁₁₁ | gut | | | | | FLTWICL ₂₈₋₃₄ | No homologic | cal heptamers in comme | ensal | LITWICL ₂₈₋₃₄ | No homological heptamers in commensal or opportunistic bacter | | | | | | V ₇₀ L | CFVLAAV ₆₄₋₇₀ | Enterobacter sp.
Ag1 | Formate dehydro-
genase-O subunit
gamma ₂₄₋₃₀ | gut | CFVLAAL 64-70 | No homological heptamers in commensal or opportunistic ba | | | | | | | FVLAAVY ₆₅₋₇₁ | | cal heptamers in comme
oportunistic bacteria | ensal | FVLAALY ₆₅₋₇₁ | Bacteroides dorei
CL03T12C01 | HAD hydrolase, family IA ₃₄₄₋₃₅₀ | gut | | | | | VLAAVYR ₆₆₋₇₂ | | cal heptamers in comme oportunistic bacteria | ensal | VLAALYR ₆₆₋₇₂ | Bifidobacterium longum
subsp. infantis (strain
ATCC 15697 / DSM
20088 / JCM 1222 /
NCTC 11817 / S12) | Putative ABC transporter permease component 110-116 | gut | | | | | | | | | | Haemophilus parainflu-
enzae ATCC 33392 | ABC transporter,
permease protein ₁₂₁₋₁₂₇ | upper
respiratory
tract, lung | | | | | LAAVYRI ₆₇₋₇₃ | Lachnospira-
ceae bacterium
3_1_57FAA_CT1 | Uncharacterized protein ₁₃₀₋₁₃₆ | gut | LAALYRI ₆₇₋₇₃ | Acinetobacter sp. CIP
101966 | Uncharacterized protein ₁₈₋₂₄ | oral cavity | | | | | AAVYRIN ₆₈₋₇₄ | Lautropia mirabilis
ATCC 51599 | Selenide,
water dikinase ₅₆₋₆₂ | oral ca-
vity, upper
respira-
tory tract | AALYRIN ₆₈₋₇₄ | Prevotella melaninogenica
(strain ATCC 25845 /
DSM 7089 / JCM 6325
/ VPI 2381 / B282)
GN=HMPREF0659_
A647 | Hydrolase, NUDIX
family ₅₄₋₆₀ | upper
respiratory
tract | | | | | | Lachnospiraceae
bacterium JC7 | Diguanylate cyclase
(GGDEF) domain-
containing protein | gut | | Lactobacillus ruminis
(strain ATCC 27782 /
RF3) | Conserved hypothetical
YitT family protein | gut | | | | | | | (Precursor) ₁₁₄₋₁₂₀ | | | Bacteroides nordii
CL02T12C05 | Uncharacterized protein ₇₀₀₋₇₀₆ | gut | | | | | $AV_{YRINW_{69-75}}$ | | cal heptamers in comme
oportunistic bacteria | ensal | ALYRINW ₆₉₋₇₅ | No homological heptamers in commensal or opportunistic bacter | | | | | | | Vyrinwi ₇₀₋₇₆ | No homologio
or op | cal heptamers in comme
oportunistic bacteria | ensal | Lyrinwi ₇₀₋₇₆ | No homological heptamers in commensal or opportunistic bacte | | | | | | I ₈₂ T | ITGGIA 176-82 | Ruminococcus
obeum ATCC
29174 | lon channel ₁₄₃₋₁₄₉ | gut | ITGGIA T_{76-82} | Enterococcus faecalis | Dephospho-CoA
kinase ₇₋₁₃ | gut | | | | | | Bacteroides sp. 3_1_19 | Putative uncharacte-
rized protein ₁₅₈₋₁₆₄ | gut | | Clostridium asparagi-
forme DSM 15981 | ABC transporter, permease protein ₂₆₈₋₂₇₄ | gut | | | | | TGGIAIA ₇₇₋₈₃ | | cal heptamers in comme | ensal | TGGIATA ₇₇₋₈₃ | Veillonella sp. oral taxon
780 str. F0422 | PrpF protein ₃₁₂₋₃₁₈ | oral cavity | | | | | GGIAIAM ₇₈₋₈₄ | Enterobacte-
riaceae bacterium
9_2_54FAA | Uncharacterized protein ₂₇₀₋₂₇₆ | gut | GGIATAM ₇₈₋₈₄ | | cal heptamers in commensa oportunistic bacteria | l | | | | | | Eubacterium sulci
ATCC 35585 | Peptidase, M20/M25/
M40 family ₁₃₆₋₁₄₂ | gut | | | | | | | | | | Lactobacillus
brevis subsp.
gravesensis ATCC
27305 | Transporter, major facilitator family protein ₄₂₁₋₄₂₇ | gut | | | | | | | | | GIAIAMA ₇₉₋₈₅ | Lachnospiraceae
bacterium 10-1 | Uncharacterized protein ₁₄₈₋₁₅₄ | gut | GIATAMA ₇₉₋₈₅ | Enterobacter aerogenes
UCI 48 | Uncharacterized protein ₃₂₀₋₃₂₆ | gut | | | | | IAIAMAC ₈₀₋₈₆ | | cal heptamers in comme oportunistic bacteria | ensal | IATAMAC ₈₀₋₈₆ | No homological heptamer | rs in commensal or opportun | istic bacteria | | | | | Alamacl ₈₁₋₈₇ | No homologic | cal heptamers in comme oportunistic bacteria | ensal | ATAMACL ₈₁₋₈₇ | Lactobacillus paracasei
subsp. paracasei CNCM
I-4649 | Class II aldolase/adducin family protein ₁₀₁₋₁₀₇ | oral cavity,
gut | | | | | IAMACLV ₈₂₋₈₈ | No homologic | cal heptamers in comme | ensal | TAMACLV ₈₂₋₈₈ | No homological heptamer | s in commensal or opportun | istic bacteria | | | # **Nucleocapsid** protein Two mutations are known in the Delta variant nucleocapsid (N) protein, namely $\rm R_{203}M$ and $\rm D_{377}Y$ [11]. N protein Delta variant 419 aa MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQR RPQGLPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSSPDD QIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYG ANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTTLPK GFYAEGSRGSQASSRSSRSRNSSRNSTPGSSMGTSPARM AGNGGDAALALLLDRLNQLESKMSGKGQQQQGQTVTKKSAA EASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQ GTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAI KLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKAYETQA LPQRQKKQQTVTLLPAADLDDFSKQLQQSMSSADSTQA The heptamers of N protein homologous with the proteins of some opportunistic bacteria and the most common cereals are listed in Table 7. ${\it Table~7}$ The heptamers of N protein homologous with the proteins of some opportunistic bacteria and the most common cereals | | | Wuh | an-Hu | | | Delta | | | |--------------------|-------------------------------------|--|--|--------------------------------|-------------------------------------|------------------------------------|--|-------------------------------------| | Mutation | N protein
heptamer | Species | Homologous protein heptamer | Localization in the human body | N protein
heptamer | Species | Homologous protein heptamer | Localization in the
hu-
man body | | R ₂₀₃ M | STPGSSR ₁₉₇₋₂₀₃ | Prevotella
buccalis ATCC
35310 | NHL repeat protein ₃₀₆₋₃₁₂ | oral cavity | STPGSSM ₁₉₇₋₂₀₃ | No bacterial or cereal sample | | | | | TPGSS $R_{G_{198-204}}$ | No | bacterial or cereal samp | le | TPGSSMG ₁₉₈₋₂₀₄ | Bacteroides uniformis CAG:3 | Uncharacterized protein ₁₂₈₋₁₃₄ | gut | | | PGSSRGT ₁₉₉₋₂₀₅ | Zea mays | Putative WRKY
DNA-binding domain
superfamily
protein ₇₈₋₈₄ | gut | PGSS M GT ₁₉₉₋₂₀₅ | Oryza sativa
subsp. indica | Putative
uncharacterized
protein ₅₅₈₋₅₆₄ | gut | | | and Data | Sorghum bicolor | Putative uncharacterized protein Sb07g002490 ₂₇₋₃₃ | gut | | | | | | | GSSRGTS ₂₀₀₋₂₀₆ | Sorghum bicolor | Putative uncharacterized protein Sb08g014350 ₁₇₆₋₁₈₂ | gut | GSSMGTS ₂₀₀₋₂₀₆ | Fusobacterium
sp. CM21 | Permease family protein ₂₉₄₋₃₀₀ | oral cavity | | | ssRgtsp ₂₀₁₋₂₀₇ | Hordeum
vulgare var.
distichum | Uncharacterized pro-
tein ₂₆₇₋₂₇₃ | gut | ssMgtsp ₂₀₁₋₂₀₇ | No ba | acterial or cereal samp | le | | | | Oryza sativa
subsp. japonica | Expressed pro-
tein ₂₁₆₋₂₂₂ | gut | | | | | | | sRgtspa ₂₀₂₋₂₀₈ | No bacterial or cereal sample | | | sMgtspa ₂₀₂₋₂₀₈ | No ba | acterial or cereal samp | le | | | RGTSPAR ₂₀₃₋₂₀₉ | Oryza sativa
subsp. japonica | Os06g0523800
protein ₁₁₈₋₁₂₄ | gut | MGTSPAR ₂₀₃₋₂₀₉ | No bacterial or cereal sample | | | | D ₃₇₇ Y | DKKKKAD ₃₇₁₋₃₇₇ | Prevotella sp.
oral taxon 473
str. F0040 | Pseudouridine
synthase, RluA
family ₂₉₅₋₃₀₁ | oral cavity | DKKKKA Y ₃₇₁₋₃₇₇ | Lachnospiraceae
bacterium 3-1 | Oligoendopeptidase
F ₄₃₉₋₄₄₅ | gut | | | кккаDе ₃₇₂₋₃₇₇ | Prevotella sp.
oral taxon 473
str. F0040 | Pseudouridine
synthase, RluA
family ₂₉₆₋₃₀₂ | oral cavity | KKKKA Y E ₃₇₂₋₃₇₇ | Oryza sativa
subsp. indica | Putative
uncharacterized
protein ₁₀₉₀₋₁₀₉₆ | gut | | | | Enterococcus faecalis | Uncharacterized pro-
tein ₃₉₆₋₄₀₂ | gut | | | | | | | кккаDет ₃₇₃₋₃₇₉ | | No significant sample | | KKKA Y ET ₃₇₃₋₃₇₉ | Bacillus infantis
NRRL B-14911 | GntR family
transcriptional regu-
lator ₂₋₈ | ? | | | кка D етQ ₃₇₄₋₃₈₀ | No | bacterial or cereal samp | le | KKA Y ETQ ₃₇₄₋₃₈₀ | No ba | acterial or cereal samp | le | | | ка D етQA ₃₇₅₋₃₈₁ | Homo sapiens | Myopalladin ₉₀₋₉₆ | ? | KA Y ETQA ₃₇₅₋₃₈₁ | No ba | acterial or cereal samp | le | | | aDetqal ₃₇₆₋₃₈₂ | Oryza
glaberrima | Uncharacterized protein (Frag-
ment) ₄₇₄₋₄₈₀ | gut | aYetqal ₃₇₆₋₃₈₂ | Lachnospiraceae
bacterium M18-1 | Uncharacterized protein ₂₄₄₋₂₅₀ | gut | | | Detqalp ₃₇₇₋₃₈₃ | No | bacterial or cereal samp | le | YETQALP ₃₇₇₋₃₈₃ | Lachnospiraceae
bacterium M18-1 | Uncharacterized protein ₂₄₅₋₂₅₁ | gut | As shown above, some of the mutations that occurred in the Delta variant increased the homology of its structural proteins with those of the opportunistic and some other bacteria. These data are summarized in Table 8. Information about the effects that mutations in SARS CoV-2 Delta variant have on the homology between its structural proteins and human opportunistic bacteria proteins are summarized in Figure 1. #### DISCUSSION In Wunan-Hu variant, the S protein molecule contains dozens of heptamers homologous to human proteins. Their total length is 169 amino acid residues, or 13.3% of the S protein molecule total length [5]. For the sake of brevity, we suggest calling **ho**mologous motifs homots. For example, a SARS CoV-2 S protein human homot means a motif common for the S protein and any human protein. The same way "in SARS CoV-2 S protein, the motif SPRRARS is a human homot" means that motif SPRRARS is present in the S protein of coronavirus as well as in some human protein. The term mimics, proposed by Damoiseaux et al. [12], is close in meaning but less specific. We assumed that the reason for the special qualities of SARS CoV-2 Delta variant should be sought in the greater homology of its proteins with those of the human body. However, we did not find any significant differences between Wuhan-Hu variant and Delta variant in their homology to human proteins. # Bypassing the immunity? Fig. 1. The effect of mutations in SARS CoV-2 Delta variant structural proteins S, M, and N on their homology with human opportunistic bacteria. The most important mutation, in our opinion, is highlighted in red font Delta variant stays on the nasal mucosal surface significantly longer than Wuhan-Hu variant (14 vs. 8 days) [13]. As has been already mentioned, we considered the human proteome in general as a set of proteins synthesized by the Table 8 Mutational changes of homology SARS CoV-2 structural proteins with proteins of opportunistic bacteria and some other functionally significant proteins | Protein | Mutation of commensal or opportunistic bacteria, of gut commensal or inhabitants of the oral cavity, upper bacteria and/or | | Increases homology with proteins of gut commensal or opportunistic bacteria and/or the most common cereals | Increases homology with some other proteins | |-------------|--|-----|--|--| | S (Table 2) | T ₁₉ R | + | + | | | | G ₁₄₂ D* | + | - | | | | Δ _{156,157;} R ₁₅₈ G | +++ | +++ | Homology with a protein of Bacillus sp. NRRL B-14911 that can provoke autoimmune damage to the heart | | | L ₄₅₂ R | - | - | | | | T ₄₇₈ K* | - | - | | | | P ₆₈₁ H | - | - | | | | D ₉₅₀ N* | + | + | Homology with a protein of Human immunodeficiency virus 1 (Table 4) | | M (Table 6) | A ₂ S | - | - | | | | F ₂₈ L | + | ++ | | | | V ₇₀ L | ++ | ++ | | | | I ₈₂ T | + | - | | | N (Table 7) | R ₂₀₃ M | - | - | | | | D ₃₇₇ Y | - | + | | ^{*}The same mutation has occurred in Omicron variant. macroorganism itself, proteins of commensal and opportunistic bacteria, and the most common digestive proteins, therefore studying the homology of SARS CoV-2 Delta variant with all the listed types of proteins. In S protein, mutations at the positions 19, 142, 156-158, and 950 created a number of heptamers homologous to proteins of bacteria, that are always present in the human nasopharynx, mouth, throat, upper respiratory tract, and lung (Table 2). It is possible that the presence of such homologous motifs allows Delta to bypass the innate immunity protection more successfully. Mutations S:G₁₄₂D and S:D₉₅₀N are also found in Omicron variant, while the mutations S:T₁₉R and S: $\Delta_{156,157}$,R₁₅₈G are only present in Delta variant. These exclusive Delta variant mutations especially the ones at the positions 156-158 may be the reason for its specific qualities. The L₄₅₂R and T₄₇₈K mutations did not affect the homology of S protein with proteins of opportunistic bacteria (Table 2). In Delta variant, the positions where the most significant increase in homology occurred — $S:\Delta_{156,157};R_{158}G$ — are located in the N-terminus domain (NTD₁₄₋₃₀₃). So far, researchers have paid less attention to this domain than to the Receptor-binding domain (RBD₃₁₇₋₅₃₉). It is logically consistent to assume that in the S protein molecule one domain is responsible for binding to the receptor and other for structural mimicry and evasion. The delta variant differs from the other SARS COV-2 variants in 14 positions. According to our data (Fig. 1), six of these alterations involved in the increase in the homology of coronavirus proteins with those of opportunistic bacteria. None of these six alterations are common to the Delta and non-VOC variants. This suggests that the increase in homology with proteins of opportunistic infections is specific to the Delta variant. We are not yet able to analyze homology data for SARS CoV-2 S protein and the HIV-1 C protein (Table 4). In M protein, the $F_{28}L$, $V_{70}L$, and $I_{82}T$ mutations resulted in the emergence of heptamers homologous to proteins of numerous commensal and opportunistic upper respiratory and gut bacteria (Table 6). M protein is located on the outer side of the virion envelope [5], and these heptamers can participate in immune evasion. In N protein (Table 7), the mutation N:R₂₀₃M resulted in the motif GSSMGTS₂₀₀₋₂₀₆ which is homologous to the Permease family protein₂₉₄₋₃₀₀ of Fusobacterium nucleatum, an opportunistic periodontal pathogen of the oral cavity [14]. The mutation M:D₃₇₇Y caused the following effects: (a) disappearance of the heptamer KADETQA₃₇₅₋₃₈₁, homologous to the human protein Myopalladin (MYPN₉₀₋₉₆), which is involved in communication between the sarcomere and the nucleus in cardiac and skeletal muscles [15]; and (b) emergence of KKKAYET₃₇₃₋₃₇₉, homologous to the heptamer GntR family transcriptional regulator₂₋₈ Bacillus infantis, which is involved in the provocation of immune myocardial disorder [16]. A recent review of the available evidence for immune mechanisms of cardiovascular damage COVID-19 has been presented [17]. N protein, located inside of the virion, should act at the later stages of the infectious process, for example, provoking an autoimmune response. Of all the Delta variant mutations we studied, none caused an increase in the homology of the SARS CoV-2 S protein with proteins with the most common cereals (Table 3). Natural selection fixes some substitutions in the primary structure of the protein molecules of viruses and eliminates others. One of the "aims" of selection might be immune evasion. A virus can achieve this by making the most functionally important parts of the protein molecule as similar as possible to the proteins permanently present in the host. Microorganisms, due to their genetic diversity and the huge size of their combined genome, provide more opportunities for viral mimicry than the macroorganism itself. Delta variant has
increased homology of S and M proteins with proteins already familiar to human immunity, namely with opportunistic bacteria proteins. The capacity of SARS CoV-2 for immune evasion can be considered universally acknowledged [3]. Coronavirus and human protein homology may be one of the mechanisms of immune evasion [5]. Delta variant necessarily has structural features that explain its specific qualities. Perhaps the reason is the homology of its proteins with those of commensal bacteria and opportunistic infections of the upper respiratory tract and lung. In this case, the $S{:}\Delta_{156,157}{;}R_{158}G$ mutation deserves special attention. The reason why SARS CoV-2 Delta variant has these specific qualities, most importantly increased lethality, is most likely to be found in a mutation at positions 156-158 of spike protein. It has not yet been concluded whether the homology of Delta variant proteins with gut bacteria proteins and dietary protein is of any significance. We hope that this preliminary study will open the door to further research into the immunology and bioinformatics. ## **METHODS** We used our original way of presenting the text search. The data were obtained from the Uniprot open-access protein database, in which the amino acid sequences of proteins are encoded by a one-letter code. We cut the primary structures of the coronavirus proteins into heptamers using the frameshift method and searched a separate database of 75777 molecules of human proteins [18]. This number is about three times the real number of all human proteins because of repetition and minor differences in the records. We looked for a full match of the 7-mer amino acid sequences in SARS CoV-2 proteins [19] with proteins of other organisms throughout the taxonomic range of evolution from bacteria and plants to humans. Heptamers were chosen as a criterion for homology because of the lack of matches in octamers and tens of thousands of matches in hexamers. In the case of matching heptamers, an alignment was performed on the matching site. # ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ Вклад авторов. А.Т. Марьянович и Д.К. Кормилец написали основной текст рукописи. А.Т. Марьянович и Д.К. Кормилец подготовили анализ данных. Авторы прочли и одобрили финальную версию перед публикацией. Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи. Источник финансирования. Данное исследование представляет собой инициативный проект авторов, финансируемый исключительно из их личных источников. Заявление о доступности данных. Источником базы данных по 75 777 строкам белков человека является [18]. Источник базы данных объемом ок. 33 млн нитей всех видов белков [19]. Иллюстрации. Для создания наших иллюстраций мы использовали GIMP (версия 2.10.22). Рисунок полностью оригинальный и нигде не публиковался. #### ADDITIONAL INFORMATION Author contributions. A.T. Maryanovich and D.Yu. Kormilets wrote the main manuscript text. A.T. Maryanovich and D.Yu. Kormilets prepared data analysis. The authors read and approved the final version before publication. Competing interests. The authors declare that they have no competing interests. Funding: This research is an authors' initiative project funded exclusively from their personal sources. Funding source. This study was not supported by any external sources of funding. Data Availability Statement: The source of database of 75777 strings of human proteins is [18]. The source of database of approx. 33 mln strings of all species proteins is [19]. Artwork. We used GIMP (Version 2.10.22) to create our artwork. The figure is completely original and have not been published anywhere. ### ЛИТЕРАТУРА / REFERENCES - Elrashdy F., Redwan E.M. & Uversky V.N. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules. 2020;10:1312. DOI: 10.3390/biom10091312. - Seyran M. et al. The structural basis of accelerated host cell entry by SARS-CoV-2. FEBS J. 2021;288:5010-5020. DOI: 10.1111/febs.15651. - Fang F.F. & Shi P.Y. Omicron a drug developer's perspective. Emerg Microbes Infect. 2022;11:208–211. DOI: 10.1080/22221751.2021.2023330. - Beaudoin C.A. et al. Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol. J. 2021;19:3938-3953. DOI: 10.1016/j.csbj.2021.06.041. - Khavinson V. et al. Homology between SARS CoV-2 and human proteins. Sci Rep. 2021;11:17199. DOI: 10.1038/s41598-021-96233-7. - Kwarteng A. et al. Molecular characterization of interactions between the D614G variant of SARS-CoV-2 S-protein and neutralizing antibodies, A computational approach. Infect. Genet Evol. 2021;91:104815. DOI: 10.1016/j.meegid.2021.104815. - McSharry B.P., Avdic S. & Slobedman B. Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors, roles in immunomodulation. Viruses. 2012;4:2448-2470. DOI: 10.3390/v4112448. - Lederberg J. Infectious history. Science. 2000;288:287–293. - Planas D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596:276-280. DOI: 10.1038/ s41586-021-03777-9. - Shen L. et al. Emerging variants of concern in SARS-CoV-2 membrane protein, a highly conserved target with potential pathological and therapeutic implications. Emerg Microbes Infect. 2021;10:885-893. DOI: 10.1080/22221751.2021.1922097. - Perez-Gomez R. The Development of SARS-CoV-2 Variants, The Gene Makes the Disease, J Dev Biol, 2021;9:58, DOI: 10.3390/ jdb9040058. - 12. Damoiseaux J. et al. Autoantibodies and SARS-CoV2 infection, The spectrum from association to clinical implication, Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2021;21:103012. DOI: j.autrev.2021.103012. - Wang Y. et al. Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou. China Eclinical Medicine. 2021;40:101129. DOI: 10.1016/j. eclinm.2021.101129. - Dessì A., Bosco A., Pintus R., Orrù G. & Fanos V. Fusobacterium nucleatum and alteration of the oral microbiome, from pregnancy to SARS-COV-2 infection. Eur Rev Med Pharmacol Sci. 2021;25:4579-4596. DOI: 10.26355/eurrev_202107_26251. - Filomena M. C. et al. Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload. Elife. 2021;24:e58313. DOI: 10.7554/eLife.58313. - Massilamany C. et al. Whole genomic sequence analysis of, defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe. BMC Genomics. 2016;17(Suppl 7):511. DOI: 10.1186/s12864-016-2900-2. - 17. Laino M. E. et al. Advanced Imaging Supports the Mechanistic Role of Autoimmunity and Plaque Rupture in COVID-19 Heart Involvement. Clin Rev Allergy Immunol. 2022;28:1-15. DOI: 10.1007/ s12016-022-08925-1. - Proteomes Homo sapiens (Human). URL: https://www.uniprot. org/proteomes/UP000005640 Homo sapiens, last change, 03 Sept 2020. (access: 24.04.2024) - Proteomes Severe acute respiratory syndrome coronavirus 2 (2019-nCoV) (SARS-CoV-2). URL: https://www.uniprot.org/proteomes/UP000464024 SARS-COV-2, last change, 20 Aug 2020. (access: 24.04.2024)