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The state of the intestinal microbiota signif-
icantly affects the onset and development of 
pancreatic diseases. Studies conducted in expe-
rimental conditions and clinical observation con-
firm the correlation between the gut microbiome 
and chronic pancreatic inflammation. In addition, 
the mechanism of chronic inflammation associa-
ted with dysbiosis may have a complex effect in 
causing such conditions as pancreatitis, metabo-
lic syndrome, type 2 diabetes mellitus, and pan-
creatic tumors. Changes in gut microbiocenosis 
can be both primary and secondary, they also 
may affect an organ that does not have its own 
microbiota.

КИШЕЧНАЯ МИКРОБИОТА 
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Abstract. This review presents scientifi c data on the features and mechanisms of the formation of gut microbiota 
in various pancreatic diseases, as well as factors aff ecting chronic infl ammatory processes.
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CHANGES IN THE MICROBIOTA IN ACUTE, 
CHRONIC AND AUTOIMMUNE PANCREATITIS

Changes in the intestinal microbiome are pos-
sible in acute and chronic pancreatitis [109, 123] 
and may even represent a complete diagnostic 
tool [8].

The occurrence of acute pancreatitis is asso-
ciated with an imbalance between pro- and an-
ti-infl ammatory cytokines [77, 123]. Experimental 
models revealed hypersecretion of pro-infl am-
matory TNF-α, IL-1β, IL-6, IL-17A, CXCL1 and IL-18 
with a concomitant decrease in Paneth cell-asso-
ciated antibacterial peptides such as alpha-defen-
sins and lysozyme [42, 44, 111].
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Antimicrobial peptides produced by acinar 
cells and Paneth cells are necessary for intestinal 
homeostasis, maintenance of intestinal immunity, 
and control under microbiome composition [128, 
131]. Using a mouse model, Ahuja et al. showed 
that deletion of the Orai1 Ca2+ channel in pan-
creatic acinar cells (Orai1–/– mice) induces seve-
ral signs of intestinal infl ammation and bacterial 
overgrowth, leading to bacterial translocation, 
systemic infection and death [72]. Experimental 
evidence supports the importance of pancreatic 
antimicrobial secretion in modulating intestinal/
pancreatic homeostasis and the integrity of the in-
testinal immune system.

As infl ammation provokes the damage of tis-
sue, pancreatic acinar cells produce several mo-
lecules that may have the function of damage-as-
sociated molecular patterns (DAMPs) [39], such as 
high mobility group protein 1 (HMGB1), heat shock 
protein 70 (Hsp70), cytosolic protease — caspase 
1, nucleotide binding domain (NLRP3), adenosine 
triphosphate (ATP) and DNA [10, 23, 93]. DAMPs 
contribute to the activation of Toll-like receptors 
(TLRs) which cover epithelial cells, immune cells, 
macrophages and other cells that have recogni-
tion function (PRRs) and can identify patho gen-
associated molecular patterns (PAMPs) [16]. At 
least 10 diff erent TLRs have been recognized [1] 
in humans, as well as polymorphisms in TLR3 and 
TLR6 genes and the extent of expression of long 
non-coding RNA. They are associated with the se-
verity of pancreatitis [14, 78] and lead to the acti-
vation of specifi c intracellular signaling pathways 
as well as produce infl ammatory cytokines and 
chemokines [60], which simultaneously protect 
the host by promoting regeneration of da maged 
tissue and mucosal immune response [10].

Pancreatitis can be considered as a unique form 
of immune-mediated infl ammation [122], where 
damaged acinar cells begin to produce the pro-in-
fl ammatory cytokine IL-33, which determines the 
activation of T-cell subpopulations involved in 
pancreatic infl ammation [58].

In acute pancreatitis, infl ammation causes in-
testinal damage by several concomitant patho-
genic mechanisms such as alterations in microcir-
culation, visceral vasoconstriction, and ischemia 
[12, 71], which increases intestinal permeability 
and facilitates the translocation of bacteria and 
toxins to the pancreas and may lead to fi brosis or 
necrosis [68]. Bacterial translocation may also be 
responsible for secondary infections associated 
with a high risk of death [67, 80].

In addition, acute pancreatitis develop-
ment is associated with an increase in the num-

ber of pathogenic bacteria from the families 
Enterobacteriaceae and Firmicutes and a decrease 
in the number of benefi cial Bacteroidetes and 
Lactobacillales [123]. Serum IL-6 levels directly cor-
related with the number of Enterobacteriaceae 
and Enterococci and inversely with the number 
of Bifi dobacterium clusters and Clostridium clus-
ter XI. Furthermore, the degree of changes in the 
gut microbiota determined the severity of disease 
progression and the likelihood of systemic compli-
cations [99].

Acute pancreatitis is also associated with some 
populations of commensal bacteria. Their occur-
rence is related to decreased levels of infl amma-
tory cytokines such as IL-1-beta, TNF-alpha, CXCL1 
and IL-18, and inversely correlates with the sever-
ity of pancreatitis and systemic infectious com-
plications. From a clinical perspective, restoring 
the physiologic composition of the gut micro-
biota may be a useful strategy for the treatment 
of acute pancreatitis [48, 69, 73, 139]. Qin et al. 
demonstrated that restoring the physiologic ra-
tio of commensals/pathogens in 76 patients with 
acute pancreatitis resulted in limiting systemic in-
fectious complications [64]. In a number of other 
studies, oral administration of probiotics showed 
no signifi cant eff ect on the outcome of the disease 
or prevention of complications [62, 73, 75].

Chronic pancreatitis is the outcome of long-
term infl ammation leading to chronic damage and 
dysfunction of the gland [5, 13].

In 30% of patients, chronic pancreatitis is ac-
companied by a syndrome of bacterial over-
growth, but specifi c changes in the composition 
of the microbiota are not fully understood [51–
81]. Some authors have observed an increase in 
Firmicutes and a relative decrease in Bacteroidetes 
[109]. Patients with pancreatitis are also aff ected 
by progressive and duration-dependent decrease 
in the commensal bacteria Faecalibacterium praus-
nitzii [28, 109], which promote mucin production 
and tight junction protein synthesis [65], induce 
the anti-infl ammatory cytokine IL-10 [89], and reg-
ulate intestinal T-cell responses indicating a pro-
longed impairment of mucosal integrity [109]. 
The level of Faecalibacterium prausnitzii was nega-
tively correlated with the level of endotoxins in 
plasma, its elevation is associated with disorders 
of carbohydrate metabolism. In addition, patients 
with chronic pancreatitis have reduced levels of 
Ruminococcus bromii [109], which play an impor-
tant physiologic role in starch degradation in the 
colon [133]. Its decrease is associated with disrup-
tion of the intestinal mucosal barrier as well as al-
tering glucose metabolism.
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Several studies indicate a decrease in Bacte-
roidetes gram-negative bacteria, which are a 
sour ce of lipopolysaccharides. In fact, lipopoly-
saccharides may activate the production of pro-in-
fl ammatory cytokines associated with NF-κB by 
binding TLR4 [54]. Patients with chronic pancrea-
titis have higher levels of lipopolysaccharides and 
endotoxin which correlate with disease duration 
and may cause pancreatic beta-cell dysfunction, 
exacerbating impaired glucose metabolism [2] 
and involving pancreatic islet cells in the infl am-
matory process. Chronic pancreatitis results in an 
increase in both Th1 and Th17 cells [96] which are 
associated with proinfl ammatory cytokines such 
as IFN-γ in pancreatic islets [104].

Autoimmune pancreatitis accounts for appro-
ximately 5% of all cases of pancreatitis and is often 
associated with other autoimmune diseases [55, 
110]. One of the diagnostic criteria is elevated se-
rum IgG4 levels [33, 38]. A genetic predisposition 
to autoimmune pancreatitis has been found [30], 
but the pathogenesis of the disease remains in-
completely understood [121].

Helicobacter pylori is associated with autoim-
mune pancreatitis [61, 79]. The bacterium trig-
gers immune responses against host tissues be-
cause of its molecular similarity [57]. Guarneri 
et al. reported homology between human car-
boanhydrase II (CA-II) and Helicobacter pylori al-
pha-carboanhydrase (HpCA). CA-II is a pancreatic 
epithelial enzyme. Its specific serum antibodies 
characterize AIP. At the same time, the bacteri-
al homolog segments contain a high-risk HLA-DR 
allele binding motif. Thus, Helicobacter pylori may 
cause disease in genetically predisposed indivi-
duals [36].

Other studies demonstrate the relationship of 
bacterial infection with the development of auto-
immune pancreatitis. In particular, Escherichia coli 
provokes severe pancreatic infl ammation with 
subsequent fi brosis in the mouse model which 
is similar to the human morphological picture 
[87]. A number of specifi c microbial antigens can 
induce the development of pancreatitis by acti-
vating immune responses. Gram-negative bac-
teria associated with LPS are able to activate the 
immune response through TLRs [1]. Several TLRs 
(TLR2, TLR3, TLR4, TLR5 and TLR7) have been affi  -
liated with the development of AIP [10, 119, 120]. 
Among them, TLR3 usually recognizes microbial 
ds-RNA that activates FAS/FasL-mediated cyto-
toxicity that is responsible for chronic infl amma-
tion [136]. Finally, TLR7 is capable of recognizing 
viral ssRNA, thereby activating proinfl ammatory 
signaling cascades [91].

MICROBIOTA CHANGES 
IN TYPE  1 DIABETES MELLITUS

Type 1 diabetes mellitus (type 1 DM) is charac-
terized by loss of insulin secretion due to damage 
of pancreatic beta cells caused by an autoimmune 
process against a background of bacterial infec-
tion [107].

Several changes in the composition of the in-
testinal microbiota have been linked to the de-
velopment of type 1 DM. In a recent study of 76 
children at high genetic risk, it was demonstra-
ted that early changes in the composition of the 
intestinal microbiome predict the onset of type 
1 DM [21, 29]. Specifi cally, Bacteroidesdorei and 
Bacteroidesvulgatus are elevated in the microbio-
me of the type 1 DM predisposed children. In con-
trast, individuals with late-onset type 1 DM show 
both similar increase in Bacteroides species and 
decrease in Clostridium leptum [10, 82].

A number of bacterial or viral antigens 
(Coxsackie A and B viruses, Echo, enterovirus, and 
others) have been associated with the develop-
ment of type 1 DM in children and adolescents 
[27, 115].

Type 1 D is accompanied by profound chang-
es in the composition of the gut microbiota and 
associated metabolites [25, 100]. Signifi cantly, 
changes occur in the ratio of butyrate-produ-
cing Bacteroidetes and Firmicutes bacteria [32–66]. 
The number of butyrate-producing and mucin- 
degrading bacteria (Prevotella and Akkermansia 
muciniphila) decreases [117], while there is an 
overgrowth of Klebsiella bacteria producing short-
chain fatty acids (SCFAs).

F. Semenkovich et al. demonstrated bidirec-
tional links between changes in gut microbiota 
and infl ammation associated with type 1 DM. The 
gut microbiota in the NOD mouse model was able 
to drive hormonal changes in the testosterone axis 
(in males) that led to susceptibility to type 1 DM. In 
turn, hormonal levels were able to alter the micro-
bial landscape in the gut. This phenomenon may 
be a possible explanation for the diff erent suscep-
tibility between the sexes [25, 31].

There was detected decreased levels of 
Lactobacillus and Bifi dobacterium species, lym-
phopenia [108] and upregulation of Th17 cells [52] 
in a mouse model with type 1 DM [26]. These data 
support the hypothesis that changes in the com-
position of the gut microbiota are associated with 
mucosal immune system abnormalities and that 
both mechanisms are involved in the pathogene-
sis of type 1 DM [125]. Increased gut permeability 
provokes the course of type 1 DM either through 
beta-cell injury or through bacterial translocation 
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and associated antigen presentation [94], or di-
rectly through beta-cell dysfunction mediated by 
microbial toxins such as streptozotocin [125].

The eff ects of diet and drugs have been studied 
in a similar manner. A study in non-obese diabe-
tic mice showed that exposure to acidifi ed water 
was able to increase the presence of mucosal and 
spleen T-regulatory cells (Tregs) and decrease the 
number of Th17 cells, thereby reducing the likeli-
hood of developing type 1 DM [50]. Modeling in 
mice has demonstrated that insulin treatment can 
positively infl uence the restoration of a healthy 
gut microbiocenosis [105]. At the same time, oral 
administration of vancomycin during the new-
born period in diabetic mice without obesity re-
duced the presence of several major genera of 
Gram-positive and Gram-negative bacteria and re-
sulted in the formation of a single dominant spe-
cies, Akkermansia muciniphila [37].

In addition, innate and acquired mucosal im-
munity plays a special role in the pathogenesis of 
type 1 DM. Nucleotide-binding protein 2 contai-
ning oligo merization domain (Nod2) has been 
identifi ed as a susceptibility factor for type 1 DM 
[137]. Nod2, mainly expressed by neutrophils and 
monocytes/macrophages, recognizes bacterial 
molecules that possess the muramyl dipeptide 
(MDP) fragment and stimulates the immune re-
sponse by inducing CD4+ Th1 and CD4+ Th17 cells 
in pancreatic tissue, promoting autoantibody pro-
duction and tissue damage [102, 130].

Li et al. bred Nod2–/– non-obese diabetic (NOD) 
mice with a diff erent composition of gut microbi-
ota compared to Nod2+/+NOD mice. The Nod2–/
–NOD animal line appears to be more protected 
against diabetes and shows a signifi cant decrease 
in pro-infl ammatory cytokines coding immune 
cells and an increase in Tregs [137]. When mice of 
the Nod2–/–NOD line were co-housed with mice 
of the Nod2+/+NOD line, Nod2–/–NOD mice lost 
their protection against the development of type 
1 diabetes. This suggests that the susceptibility 
of Nod2–/–NOD mice to type 1 DM depends on 
changes in the gut microbiota as it infl uences beta 
cells that produce immunoglobulin A (IgA), as well 
as the level of interleukin-10 (IL-10), which stimu-
lates the activity of T-regulatory cells.

Several studies have investigated the role of 
adaptive immune cells in the pathogenesis of type 
1 DM. There is evidence that beta cell damage 
occurs via CD8+ cytotoxic T cells. Their abnormal 
activation is a consequence of molecular similari-
ty and bacterial infections triggering the immune 
response. The possible role of TLRs is also dis-
cussed. pancreatic beta cells express TLR4, which 

make them sensitive to lipopolysaccharides (LPS), 
stimulating and activating the transcription of 
NF-κB-related pro-infl ammatory genes that pro-
voke an immune response against microbial inva-
sion. Thus, the increased level of TLR4 is another 
mecha nism for understanding the pathogenesis 
of type 1 DM [61].

MICROBIOTA CHANGES IN METABOLIC 
SYNDROME, TYPE 2 DIABETES MELLITUS

Metabolic syndrome is a symptom complex 
including visceral obesity, impaired glucose me-
tabolism, dyslipidemia and arterial hypertension. 
Metabolic syndrome is associated with an in-
creased risk of developing type 2 diabetes melli-
tus (type 2 DM) and cardiovascular pathology [49]. 
The disease is characterized by increased produc-
tion of cytokines (mainly TNF-α and IL-1β) [118], 
and persistent infl ammation [70]. 

The correlation between the gut microbio-
ta, the pathogenesis of metabolic syndrome and 
type 2 DM was demonstrated by Guo et al. A line 
of obese mice demonstrated that diet can alter the 
gut microbial landscape as well as the production 
of antibacterial peptides associated with Paneth 
cells and even increase circulating pro-infl amma-
tory cytokines such as TNF-alpha, IL-6 and IL-1beta 
[132]. Thus, it is diet-related gut dysbiosis, rather 
than adipose tissue itself, that plays a key role in 
the development of chronic intestinal infl amma-
tion [92]. 

Aff ecting energy production and storage, the 
gut microbiota can infl uence body weight and 
obesity, tissue pro-infl ammatory activity, periphe-
ral insulin resistance, pancreatic intestinal hor-
mone production, and bile acid metabolism [63, 
101]. Consequently, an increase in the Firmicutes/
Bacteroidetes ratio corresponds to body weight 
and promotes hydrolysis of non-digestible poly-
saccharides in the intestine, which in turn contri-
butes to an increase in calories extracted from 
food in metabolic syndrome [47, 88]. Several 
studies examining fecal samples from metabolic 
sydrome patients with type 2 DM have reported 
there is an increase in Lactobacillales with a de-
crease in Roseburiaintestinalis, Faecalibacterium 
prausnitzii, Bacteroides, Prevotella genera, 
Bifi dobacterium animalis and Methanobrevibacter 
smithii compared to healthy subjects. Increased 
levels of Staphylococcus aureus, Escherichia coli 
and Lactobacillus reuteri may be associated with 
the development of obesity [84]. 

Tannerella spp. bacteria associated with oral 
infections and periodontal diseases provoke an 
increase in several pro-infl ammatory cytokines 
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such as TNF-alpha, IL-1beta and IL-6 [116]. 
Lipopolysaccharide induced by Gram-negative 
bacteria is able to evoke an immune response 
through lipopolysaccharide-binding protein (LBP), 
which in turn binds the macrophage receptor 
CD14. The complex formed by lipopolysaccha-
ride-lipoprotein-binding protein and CD14 can ac-
tivate the pro-infl ammatory genes NF-kB and AP-1 
via TLR4 [74], and the absence of TLR4 protects 
against insulin resistance [114]. 

Gut dysbiosis can also mediate changes in 
the balance of Th17/Tregs cells. Thus, disruption 
of the physiologic balance between pro- and an-
ti-infl ammatory T cell subpopulations may be re-
sponsible for the development and progression 
of a number of infl ammatory diseases, both gas-
trointestinal and systemic, including obesity-rela-
ted metabolic syndrome and type 2 DM [70]. Thus, 
gut dysbiosis is closely associated with signifi cant 
changes in the Th17/Tregs balance contributing to 
obesity, metabolic syndrome, and type 2 DM, al-
lowing for new strategies for the treatment of the 
aforementioned diseases.

CHANGES IN THE MICROBIOTA 
IN PANCREATIC TUMORS

Pancreatic cancer is an aggressive disease with 
an uncertain prognosis. By the time of the diag-
nosis, only 25% of pancreatic cancer cases are 
amenable to radical surgical treatment. About 
95% of cases are adenocarcinomas derived from 
glandular, ductal or acinar cells of the exocrine 
pancreas [6].

An association between dysbacteriosis, chro-
nic infl ammation and pancreatic cancer has been 
established [17–24], but dysbacteriosis does not 
have direct eff ects that disrupt cell cycle control, 
activate oncogenic signaling pathways and pro-
duce tumor metabolites [41–85]. However, gut 
dysbiosis can activate the immune system through 
several pathways that include tumor-infi ltrating 
lymphocytes (TILs) and their associated cytokines, 
innate immune cells, TLRs, and others. Thus, TILs 
produce pro-infl ammatory mediators that induce 
STAT3 and NF-κB pathways, which act as onco-
genic factors by enhancing cell proliferation and 
inhibiting apoptosis [15–98].

Several microbe-free mouse lines have made it 
possible to understand the signifi cant role of the 
gut microbiome which infl uence carcinogenesis. 
The probability of cancer development is signifi -
cantly reduced, possibly due to the absence of gut 
dysbiosis and associated chronic infl ammation 
[135]. A similar eff ect was found in mice after anti-
biotic treatment, which may indicate a reduced in-

fl uence of pathogens in the intestinal mucosa [24]. 
Other experimental evidence suggests a close as-
sociation between diet, xenobiotics, gut microbio-
ta and cancer [20]. One study found an increased 
risk of tumor development in mice that were ge-
netically predisposed to colorectal cancer and had 
a certain composition of gut microfl ora. This tu-
mor predisposing phenotype could be transferred 
to healthy mice after microbiota transplantation 
using fecal samples. Interestingly, antibio tics 
were able to limit tumor development, likely by 
blocking the intestinal gut microbiota in the mice. 
Boursi et al. performed a large population-based 
study showing that repeated exposure to antibio-
tics, particularly penicillin, may contribute to the 
development of esophageal, gastric, pancreatic, 
and rectal cancers, probably due to changes in the 
microbiota [4].

In chronic pancreatitis, people with KRAS mu-
tation have an increased risk of pancreatic cancer 
[9, 95, 131, 132], and gut dysbiosis can accelerate 
pancreatic carcinogenesis through mutated KRAS 
hyperstimulation [40, 43]. Gram-negative LPS-
TLR4 was linked in inducing chronic infl ammation 
and cancer as well [56]. Ochi et al. experimental-
ly discovered the infl uence of lipopolysaccharides 
in the pathogenesis of pancreatic cancer [56]. LPS 
administration in mice was able to signifi cantly ac-
celerate carcinogenesis, while TLR4 inhibition li-
mited cancer progression.

Bacterial pathogens are capable of acting as 
carcinogenic factors. Among them, Helicobacter 
pylori plays a special role [79], which can promote 
gastric, liver and pancreatic cancer by inducing 
activation of nuclear factor NF-κB and its pro-in-
fl ammatory cytokines such as IL-1β [53]. Some 
Fusobacterium species have also been associated 
with the development of pancreatic cancer, and 
they are associated with worse prognosis [138].

Ren et al. found decreased microbiota diver-
sity in 85 pancreatic cancer patients compared 
to 57  healthy individuals [22]. Patients with 
pancrea tic tumor have a specifi c microbial pro-
fi le characterized by an increased presence of 
some pathogens such as Veillonella, Klebsiella 
and Selenomonas, as well as bacteria capable of 
producing lipopolysaccharides (LPS) including 
Prevotella, Hallella and Enterobacter. Related to 
this, there was a decrease in some commensal mi-
croorganisms, such as Bifi dobacterium, and a de-
crease in bacteria that produce butyrate, such as 
Coprococcus, Clostridium IV, Blautia, Flavonifractor 
and Anaerostipes. Evidence of an increase in LPS-
producing bacteria supports the role of dysbiosis 
in mediating chronic infl ammation and oxidative 
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damage, activating the NF-κB pathway and asso-
ciated production of pro-infl ammatory cytokines. 
Thus, prolonged chronic infl ammation and oxida-
tive damage provoke carcinogenesis.

In addition, pancreatic cancer correlated with 
a change in the physiological composition of the 
oral microbiota towards predominance of micro-
bial associations associated with periodontal di-
seases [45]. Farrell et al. performed a study ana-
lyzing the salivary microbiota of several patients 
with pancreatic cancer and chronic pancreatitis 
compared to healthy controls. The researchers 
found specifi c changes in the composition of the 
salivary microbiota (decrease in Neisseria elon-
gata, Corynebacterium spp. and Streptococcus 
mitis and increase in Granulicatella adiacens and 
Porphyromonas gingivalis) [45, 46]. Torres et al. 
conducted a cross-sectional study showing an 
increase in Leptotrichia spp. and a decrease in 
Porphyromonas spp. in the saliva of a pancrea-
tic cancer patient; thus, a higher Leptotrichia / 
Porphyromonas (L/P) ratio may be an important 
biomarker for the diagnosis of pancreatic cancer 
[19]. Michaud et al. found that the highest con-
centration of serum antibodies to Porphyromonas 
gingivalis bacteria (associated with periodontal 
disease) was associated with a twofold increased 
risk of pancreatic cancer [35], which can be used 
as a tool to detect early pancreatic cancer using 
blood, saliva and fecal samples. However, fur-
ther studies on the relationship of gut microbial 
changes in the mechanism of pancreatic cancer 
are required.

In conclusion, pancreatic cancer is consi dered 
an insidious and aggressive disease characterized 
by late diagnosis and lack of effective screening 
methods. The use of gut microbiome modulation 
for therapeutic purposes is unlikely in ge neral 
clinical practice; however, the determination of 
the gut microbiocenosis pattern may become a 
diagnostic tool in predicting the development 
of pancreatic cancer, thereby improving survival 
rates.

CONCLUSIONS
The gut microbiota plays a central role in the 

development and modulation of gut homeostasis 
and mucosal immune system integrity. It plays an 
important role in protection against pathogenic 
microbes by maintaining gut integrity and regu-
lating the permeability of the intestinal barrier.

The pancreas does not possess its own micro-
fl ora, and evidence suggests that alteration of the 
gut microbiota, which determines dysbiosis and 
bacterial translocation, correlates with the dura-

tion and prognosis of several pancreatic diseas-
es, including pancreatitis, diabetes, and cancer. 
However, it remains unclear whether gut dysbio-
sis is a cause or a consequence of such pathologic 
conditions.
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