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Abstract. Over the past few decades, the prevalence of obesity worldwide has reached epidemic proportions.
Obesity and overweight during pregnancy are associated with worse maternal and child outcomes. In addition,
studies show that maternal obesity can lead to long-term consequences for the offspring, increasing the risk
of neuropsychiatric disorders, metabolic, atopic diseases, and possible changes in the immune / inflammatory
status. In addition to genetic mechanisms, a growing body of evidence suggests the induction of epigenetic
changes by maternal obesity, which may influence offspring phenotype, thereby influencing later risk of obesity
and cardiometabolic disease. However, the mechanisms linking the maternal environment to adverse short and
long term outcomes remain poorly understood. This review presents current knowledge about the impact of
maternal obesity on a child in the first year of life. Understanding these processes is key to developing therapeutic
interventions to prevent future cardiovascular and metabolic pathologies in future generations.
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Peztome. 3a NocnefHye HECKONIbKO AECATUIIETUN PACNPOCTPAHEHHOCTb OXKUPEHUS BO BCEM MUPE JOCTUIIA Mac-
wraboB anvaemmmn. OXupeHvie 1 36bITOUYHBIN BEC BO BpeMs 6epeMEHHOCTI CBA3aHbI C YXyZLLEHEM UCXOAO0B AS
MaTepu 1 pebeHka. Kpome Toro, ncciejoBaHWs NMOKa3blBaloOT, YTO MAaTEPUHCKOE OXKMNPEHVIE MOXKET NPUBECTY K 101
rOCPOYHbIM MOCNEeACTBUAM AJIA NMOTOMCTBA, YBENIMUMBas PUCK Pa3BUTUS MCMXOHEBPOJIOMMYECKMX PAcCTPOWCTB,
METab0NIMYECKNX, ATOMMYECKIX 3a00/1IeBaHNIA, @ TaKXKe BO3MOXHbIX M3MEHEHWI MMMYHHOTO / BOCMAJITENbHOIO
cTaTyca. B JononHeHne K reHeTnyeckum MexaHn3mam Bce 6onblue AaHHbIX CBUAETENbCTBYET 06 MHAYKLMM Snure-
HETUYECKNX U3MEHEHWIN MAaTEPUHCKIM OXXUPEHMEM, KOTOPbIE MOTYT BAVATb Ha GEHOTUM NOTOMCTBA, TEM CaMbIM
NPOrpaMMMpPYsi PUCK OXKUPEHUS N KapAMoMeTabonnyeckmnx 3aboneBaHnin. OgHaKo MexaHU3Mbl, CBS3blBaloLLiEe
MaTEePUHCKYI0 cpefly C HEGAronpPUATHLIMU KPAaTKOCPOYHBIMI 1 JOSIFOCPOYHBIMU NMOCeACTBUAMY, OCTAOTCA MI0-
XO U3yYeHHbIMU. B LaHHOM 0630pe NpeacTaBneHbl COBPEMEHHbIE 3HaHVIA O BIVSIHAM MaTEPUHCKOTO OXKMPEHUSA BO
Bpems 6epemMeHHOCTN Ha pebeHKa B NePBbI Fof »Kn3HW. [oHVMaHne 3TVX NPOLIECCOB MMEET KITloUYEBOE 3HaUeHe
A8 pa3paboTKM TepaneBTMYECKUX BMELLATENBCTB C LieNblo NPefoTBPaLLEHUA Oy ayLNX CepaeYHO-COCYANCTbIX 1
METab0NIMUYECKNX MATONOMMIA Y MOCTIEAYIOLLMX MOKOMEHWN.

Knroyeebie cnoea: MamepuHcKoe oXupeHuUe; NepuHamarbHolli nepuod; Memabosudeckuti CUHOPOM, NOMOMCMB0
Mamepeli c oXXupeHuem; Mamos—naayeHma-nsoo.
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INTRODUCTION

Obesity is a serious medical and social problem
in modern medicine, it reaches epidemic propor-
tions worldwide. In 2022, according to the World
Health Organization report on obesity in Europe,
about 55.5% of adult population is overweight
and obese. The prevalence of obesity in women
of childbearing age is steadily increasing [1]. In
2017-2018, the prevalence of obesity in women of
childbearing age in the US was about 40% [2-4],
in the UK, 21.6% of women had obesity and 27.4%
were overweight. In Scotland in 2021, 25.9% of
women were obese by the time of pregnancy [3].
Statistical data in the Russian Federation echo the
global trend. Thus, according to the results of the
epidemiologic study ESSE-RF (Epidemiology of
cardiovascular diseases and their risk factors in the
regions of the Russian Federation) in 2013-2014,
obesity was found in almost every third citizen of
Russia. The second wave of the ESSE-RF program,
conducted in 2017, included 17 regions and more
than 26,000 participants of both sexes aged from
20to 64 years. The results of the study showed that
obesity was registered in 27.9% of men and 31.8%
of women, the prevalence of obesity in women of
childbearing age reached 25% [5]. Currently, the
problem of obesity in women of childbearing age
is urgent, according to recent studies demonstra-
ting the adverse effect of maternal obesity on the
health of offspring. Obesity significantly compli-
cates the course of pregnancy and labor, contri-
buting to obstetric complications 2-3 times more
often than in women with normal body mass index
[6-8]. In addition, women with obesity are more
likely than women with normal body mass index
(BMI) to have excessive gestational weight gain,
which has also been shown to increase obstetric
and perinatal risks [9-12].

THE IMPACT OF MATERNAL OBESITY
ON FETAL GROWTH AND DEVELOPMENT.
PERINATAL RISKS

Numerous studies have proven the role of ma-
ternal obesity in the formation of various com-
plications of pregnancy and childbirth, such as
pregnancy failure, preeclampsia, gestational dia-
betes mellitus, gestational arterial hypertension,
labor anomalies, increased incidence of operative
delivery, bleeding in labor and early postpartum
period, maternal and fetal traumas, surgical infec-
tions, and delayed fetal intrauterine development
[14-18]. In addition to complications of pregnan-
cy and labor, perinatal risks, the mechanisms of
long-term effects of maternal obesity on offspring
are actively studied. Currently, there are sporadic
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studies investigating the impact of maternal obe-
sity in the first year of a child's life, the influence of
genetic and epigenetic factors.

During pregnancy, significant anatomical and
physiological changes occur in many organs and
systems of a woman's body to ensure nutrition
and development of the fetus. One of the impor-
tant mechanisms of physiologic adaptation of
the maternal body to pregnancy is the controlled
production of cytokines, inflammatory and proin-
flammatory factors by different cell subtypes at the
maternal-fetal interface, since strict regulation of
inflammatory factors is required for implantation,
placentation, and continuation of pregnancy [19,
20]. Maternal obesity is associated with changes
in the profile of the inflammatory response, which
directly affects physiologic adaptation. Pregnancy
with obesity and excessive body weight results in
low-grade chronic inflammation secondary to an
impaired immune cell profile, subsequently leading
to activation of pro-inflammatory mechanisms.
This condition has the name "metaflammation” in
the current literature. Nowadays, metaflammation
is recognized as a major factor affecting offspring
health in early life [21, 22]. Three immunological
stages based on the body's inflammatory response
during pregnancy have been described [20, 23].
In the first trimester, the initial pro-inflammatory
stage is important for implantation and placenta-
tion. With the onset of the Il trimester, Th2-type
anti-inflammatory and immune stage appears,
which is necessary for fetal growth. In the lll trimes-
ter, the pro-inflammatory stage and Th1-type im-
mune activation initiate labor and delivery [20-23].
In addition to the important role of Th1 and Th2
cells during pregnancy, other T-helper cells such
as T-helper 17 (Th17), T-helper 22 (Th22), follicu-
lar T-helper (Tfh) and regulatory T-cells (Treg) of
the mother and fetus contribute to the continua-
tion of a healthy pregnancy. Th17 and Th22 cells
are involved in the induction of immunity against
extracellular pathogens at the maternal-fetal in-
terface [20-22]. Uncontrolled Th1 and Th17 re-
sponse is associated with implantation failure and
pregnancy failure [21-28]. Treg cells enhance fetal
immune tolerance by suppressing excessive Th1
and Th17 activity and autoimmune response [29].
Follicular T-helper cells in the third trimester pro-
vide humoral immunity by activating B-cells to in-
itiate an antibody response outside the follicular
and germinal center [30]. Type 1 (Th1) and type 2
(Th2) T-helper cells represent the two major sub-
sets of CD4 T-helper cells that regulate the adap-
tive immune response [31]. Th1 cells produce high
levels of interferon-y (IFN-y), interleukin-2 (IL-2), tu-
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mor necrosis factor (TNF) and are responsible for
phagocyte-dependent inflammation as well as for
defense against intracellular pathogens [31]. They
also play an important role in the development of
organ-specific autoimmune diseases and chronic
inflammatory diseases [31]. Th2 cells produce IL-4,
IL-5, IL-6, IL-9, IL-10 and IL-13, which leads to an ex-
cessive immune response by switching B cells, ac-
tivating eosinophils and inhibiting phagocytic acti-
vity [32]. Despite some inconsistent results, a lot of
studies, found in the current literature, show that
mothers with obesity before pregnancy have in-
creased levels of pro-inflammatory cytokines such
as IL-8, IL-6, CRP, TNF-a and IFN-y and altered le-
vels of adipokines [33-40]. Inflammation occurring
against a background of maternal obesity leads
to impaired placental development, which affects
both maternal and placental inflammatory profiles
[41-43]. Nowadays, the influence of cytokines on
implantation and remodeling of spiral arteries has
been proven. For example, abnormally high levels
of TNF-a can lead to impaired remodeling of spiral
arteries [44], and IL-6 increases trophoblast cell mi-
gration and invasion, while TNF-a decreases it [45-
48]. Recent studies have demonstrated that mater-
nal obesity is associated with increased placental
mass and decreased placental efficiency, indicat-
ing an adaptation to increased nutrient availability
to requlate fetal growth [49-54]. A linear correla-
tion between placental mass and birth weight has
also been found [49, 54]. Placental transport has a
significant influence on the fetal intrauterine envi-
ronment [55]. In pregnancies with a background
of obesity, abnormal placental vasculature is the
most common placental pathology [53, 56-59].
Placental vascular growth is regulated by angio-
genic factors including VEGF, placental growth
factor (PIGF) forming growth factor-f3 (TGF-3) and
leptin, as well as anti-angiogenic factors such as
soluble fms-like tyrosine kinase-1 (sFlt-1) and so-
luble endoglin (sEng) [7-9, 51]. By the end of the
second trimester, the villous vessels begin to form
loops and wriggle, dramatically increasing the sur-
face area for nutrient and gas exchange [60]. The
imbalance between pro- and anti-angiogenic fac-
tors is considered an important link in the patho-
genesis of preeclampsia and intrauterine devel-
opmental delay [65]. Obesity has been proven to
be associated with increased placental expression
of VEGF, decreased levels of circulating PIGF and
sFlt-1 [66, 67]. Thus, maternal obesity impairs the
development of placental architecture, potentially
jeopardizing fetal growth and survival [60].

In the early stages of physiologically normal
pregnancy, insulin sensitivity is increased, which
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promotes glucose uptake by adipose tissue, which
in turn prepares the body for increased energy re-
quirements later in pregnancy [61]. Obese women
have 50-60% higher postprandial insulin concen-
trations than women with normal body mass in
both early and late pregnancy [62]. Women with
obesity also have greater glucose tolerance com-
pared to pregnant women with normal BMI, as
evidenced by higher fasting glucose levels 1 and 2
hours after the oral glucose tolerance test (OGTT)
[62]. Although glycemic values may not meet the
criteria for gestational diabetes mellitus (GDM),
an abnormal response to the OGTT in obese wo-
men is associated with the risk of delivering a fetus
large for gestational age [63]. In addition, in obese
or overweight pregnant women, increased levels
of circulating cytokines in the maternal blood,
such as TNF-a and IL-6, have been reported. This
association has been proven in the development
of insulin resistance in the first and second trimes-
ters of pregnancy [64-66].

In studies carried out on animal models and
then repeated in humans, it was found that ma-
ternal obesity leads to decreased transport of
oleic acid in the placenta in male children, which
is associated with decreased expression of the
CD36 transporter (fatty acid translocase) and in-
tracellular fatty acid binding protein (FABP 5) [67].
Increased lipid transfer to the fetus contributes
to the development of adipose tissue, and thus
the risk of developing overweight offspring [68].
Hyperlipidemia and vascular dysfunction may be
an important mediator of cardiometabolic diseas-
es observed in offspring born to obese mothers.
Considering all the above mechanisms, it can be
concluded that maternal obesity has deleterious ef-
fects on offspring health. Short-term adverse fetal
outcomes in infants of obese mothers include in-
creased risk of fetal overgrowth, stillbirth, and neo-
natal hypoglycemia [69, 70]. A meta-analysis of pub-
lished data from 38 cohorts showed that maternal
obesity and even small increases in BMI were asso-
ciated with an increased risk of intrauterine and in-
fant death. For women with BMI >30 kg/m?, the ab-
solute risk per 10,000 pregnancies was 102 and 43
intrauterine and infant deaths, respectively [71].
Pregnancies of overweight women are associated
with a 2-3-fold increased risk of fetal macrosomia;
this is associated with an increase in absolute fe-
tal size and its fat mass [72-74]. Some studies sug-
gest that the programming of obesity in offspring
by maternal obesity may be partially sex-specific,
basically, male offspring have a greater suscep-
tibility to the risks of developing of obesity com-
pared to female offspring born to obese mothers
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[75]. Fetal overgrowth is the main reason for the
increased incidence of cesarean section [76, 77].
Severe neonatal hypoglycemia occurs in 10-15%
of neonates and can lead to nervous system da-
mage [78]. In maternal obesity, neonatal hypogly-
cemia is usually transient and occurs because of
inadequate, persistent hyperinsulinemia caused
by higher than normal concentrations of glucose
in the womb [79].

REGULATORY FACTORS AT THE LEVEL
OF MOTHER-PLACENTA-FETUS
IN MATERNAL OBESITY

Data from recent studies demonstrate that
adipose tissue is an important endocrine organ
involved in metabolism through several mecha-
nisms, the most important of which is the secre-
tion of bioactive mediators by adipocytes and
other cells [80-88]. These bioactive substances,
collectively referred to as "adipokines", are impor-
tant in the pathophysiology of insulin resistance,
hyperlipidemia, inflammation, and metabolic syn-
drome [89-100]. Metabolic adaptation begins ear-
ly in pregnancy and is accompanied by changes
in maternal hormone production, including pro-
lactin, estrogen, progesterone, and cortisol [101,
102]. Placental hormone secretion, which begins
immediately after implantation and continues all
pregnancy, is important for maternal metabolic
adaptation through indirect modeling of endo-
crine axes and direct changes in maternal meta-
bolic systems [103].

Glucose metabolism. Glucose is a major sub-
strate for placental and fetal energy metabolism,
and normal pregnancy causes marked changes in
maternal glucose metabolism, including insulin
resistance, activation of hepatic glucose produc-
tion, and increased insulin release by pancreatic
[-cells with higher plasma C-peptide levels; these
mechanisms contribute to placental and fetal glu-
cose delivery [61]. Early in gestation, fasting gly-
caemia levels decrease (compared with pre-preg-
nancy glucose levels), in part due to hemodilution
associated with an increase in maternal circula-
ting blood volume. Maternal fasting glycaemia
remains consistently low in the second trimester
and reaches even lower values in the third trimes-
ter: this is due to increased glucose utilization by
the fetal-placental complex [62]. Maternal fasting
hypoglycemia during pregnancy is compensated
for by increased hepatic gluconeogenesis, which
contributes to elevated blood glucose levels and
helps maintain nutrient supply to the fetus [63-
69]. In contrast, postprandial glucose levels pro-
gressively increase during pregnancy compared

ISSN 2221-2582

to pre-pregnancy levels [106, 107]. This is due to
impaired peripheral tissue sensitivity to insulin
and hence decreased maternal glucose utilization
after meals [108]. Obese women have a higher glu-
cose profile than women with normal BMI [70-73].
Maternal glycaemia is a strong determinant of fe-
tal growth, as evidenced by the continuous asso-
ciation of maternal glucose levels with increasing
birth weight [65-67].

Insulin. Early in pregnancy, the mother has
increased secretin levels and insulin sensitivity,
which stimulates lipogenesis and decreases fatty
acid oxidation, causing maternal fat accumulation.
In mid-pregnancy, insulin resistance develops to
direct available nutrients for fetal growth and de-
velopment. This state of insulin resistance is exa-
cerbated in pregnant women with a background
of GDM or obesity [68-71]. Insulin resistance in
obesity leads to maternal hyperglycemia and,
consequently, fetal hyperglycemia, because glu-
cose freely passes through the placenta [72-78]. It
is already known, that insulin plays a neurotroph-
ic role for many brain regions; it inhibits neuronal
apoptosis through activation of protein kinase B
and protein kinase C, resulting in increased neu-
ronal survival [79-85]. High insulin levels are es-
sential for proper brain maturation [86]. However,
chronic hyperinsulinemia, which is proven to be
more common in obese mothers, corresponds to
high fetal insulin levels, which contributes to fe-
tal insulin resistance [87-94]. Maternal obesity is
also associated with characteristic changes in the
release of adipokines, which have systemic effects
on metabolism and energy homeostasis [95-98].

Adiponectin. Adiponectin is one of the adi-
pokines produced by adipocytes and the most
abundant product of adipose tissue and accounts
for 0.01% of total plasma proteins. It plays an im-
portant role in the relationship between adipose
tissue and other metabolic tissues such as liver and
skeletal muscle [45-47]. Adiponectin suppresses
hepatic gluconeogenesis and contributes to in-
sulin sensitization [45-59]. As opposed to other
adipokines, although it is secreted by adipocytes
and its plasma concentration is inversely correla-
ted with BMI [56, 99-102]. During pregnancy, adi-
ponectin levels decrease as the insulin resistance
develops in pregnant women, which contributes
to decreased glucose uptake and increased lipo-
lysis, moving nutrients such as glucose and li-
pids to the fetus [103-109]. Studies in mice have
shown that in maternal obesity, fetal adiponectin
enhances fetal fat deposition, thereby increasing
fetal body weight, proving the important role of
adiponectin in the regulation of maternal meta-

EDITORIAL



ISSN 2221-2582

bolism, placental function, and fetal development
[110-114].

Leptin. Leptin is released from adipose tissue
in proportion to its mass. Leptin levels increase
throughout pregnancy, reaching a maximum
level in the third trimester. Overweight or obese
mothers have higher levels of serum leptin before
pregnancy, so throughout pregnancy, leptin con-
centrations are higher in mother and fetus com-
pared to mothers with normal BMI [85, 87]. Leptin
involved in the development of the nervous sys-
tem as it is an important trophic factor. In studies,
leptin has been shown to bind to the receptors of
the satiety center in the hypothalamus and form
a negative feedback loop, suppressing increased
food intake and thus preventing obesity [36]. It
is shown in studies that have been carried out
on animal models that obesity is associated with
hyperleptineamia in both females and their off-
spring, and maternal obesity leads to the forma-
tion of resistance to leptin and, consequently, the
inability of leptin to cause anorexic effects [92].

Ghrelin. Ghrelin is a gut hormone with a strong
orexigenic signal. After entering the bloodstream,
ghrelin circulates in two major forms: acyl ghre-
lin and des-acyl ghrelin. The maternal concentra-
tion of total ghrelin decreases slightly through-
out pregnancy, and there is a positive correlation
between the ratio of acylated to total circulating
ghrelin in mothers in the third trimester of preg-
nancy and the baby's birth weight [106-110].
Levels of total ghrelin in cord blood are inversely
correlated with neonatal birth weight [115-117].
Studies in animal models and humans have shown
that maternal ghrelin regulates fetal development
in late pregnancy. Administration of ghrelin to
mice during the last week of gestation caused a
10-20% increase in body weight in the offspring
[118]. In studies on mice, it was shown that ghrelin
has an inhibitory role in the development of neural
connections of hypothalamus, acting as a "break"
in the balance of the neurotrophic action of lep-
tin, and, therefore, proper expression of ghrelin in
the neonatal period is important for children and
in older age.

Pre-adipocyte factor. Pre-adipocyte factor
(PREF-1) is a secreted protein that inhibits adipo-
cyte differentiation both in vitro and in vivo. Pre-
adipocyte factor is synthesized as a transmem-
brane protein whose ectodomain containing
repeats of epidermal growth factor, is cleaved by
tumor necrosis factor-a-converting enzyme to re-
lease a biologically active soluble form [104-108,
118]. The importance of PREF-1 in adipogenesis
has been demonstrated in animal models. Mice
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experimentally deprived of pre-adipocyte factor
had growth retardation, skeletal abnormalities,
tendency to obesity, impaired insulin sensitivity
and decreased glucose tolerance, which confirms
the role of PREF-1 in the regulation of adipocyte
differentiation [13]. During embryonic develop-
ment, PREF-1 is widely expressed in numerous
embryonic tissues: multipotent mesenchymal
stem cells, pancreatic glandular cells, ovarian and
male glandular cells, and is also involved in the dif-
ferentiation of the central nervous system, hepa-
tocytes, respiratory epithelial cells, mesodermal
cells of the renal proximal tubule, and adrenal cor-
tex [119-121]. Increased levels of PREF-1 are de-
tected in serum, urine, and amniotic fluid during
the second trimester of pregnancy [53]. After birth,
PREF-1 expression ceases in most tissues and is
observed in a limited number of cells: preadipo-
cytes, pancreatic islet cells, thymus stromal cells,
and adrenal cortex cells [28, 971.

Growth hormone. Growth hormone is well
known for its function in stimulating cell growth,
reproduction, and regeneration, so it is extremely
important for development. Recent research fin-
dings suggest that the brain is an important tar-
get for growth hormone in the regulation of food
intake, energy expenditure and glycaemia, espe-
cially in response to various forms of metabolic
stress such as glucoprivation, food restriction and
exercise [122-125]. During pregnancy, growth
hormone action is associated with the regulation
of maternal food intake, insulin and leptin sensi-
tivity, suggesting that growth hormone and other
gestational hormones are important in preparing
the maternal body for the metabolic needs of the
offspring [126]. Currently, little is known about
the programming effects of maternal and/or fetal
growth hormone on hypothalamic developmentin
the offspring. There is some evidence that growth
hormone regulates hypothalamic neurocircuits
that control energy homeostasis [59].

Pro- and anti-inflammatory cytokines. Nu-
merous studies show that maternal obesity furt-
her increases concentrations of pro-inflammatory
cytokines such as IL-6, TNF-a, monocyte chemoat-
tractant protein 1 (MCP-1), IL-8 and C-reactive pro-
tein in plasma, supporting the concept that the
low pro-inflammatory state associated with nor-
mal pregnancy is exacerbated by maternal obesity
[127]. The biological effects of pro-inflammatory
cytokines are counterbalanced by anti-inflamma-
tory cytokines such as IL-1, IL-4, IL-6, IL-10, IL-11
and IL-22 [63]. Obesity is now considered as a key
factor in the development of chronic inflammation
[96, 128], which is important in the pathogenesis
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of pre-eclampsia, gestational diabetes mellitus
[129]. Chronic inflammation has unfavorable sig-
nificance for fetal programming. In a recent animal
study, it was shown that the offspring of rats in-
jected with IL-6 throughout pregnancy had more
body fat compared to the control group, and male
offspring had reduced insulin sensitivity [130].

Lipids. During pregnancy, in maternal organ-
ism, a lipid accumulation occurs in the | and Il tri-
mesters, and subsequently there is an increase in
adipose tissue lipolysis. The catabolic state of fe-
male adipose tissue in late pregnancy is associated
with hyperlipidemia, mainly corresponding to an
increase in plasma triglyceride levels, and a smal-
ler increase in phospholipid and cholesterol levels
[70]. Maternal obesity is associated with increased
lipid levels, higher triglyceride and very-low-densi-
ty lipoprotein (VLDL) levels and lower cholesterol,
high-density lipoprotein (HDL) levels than women
with normal BMI [131]. Several recent studies have
shown that maternal postprandial triglycerides
and free fatty acids are stronger predictors of ne-
onatal weight gain than maternal glucose levels in
obese pregnancies [45]. The amount and nature of
fatty acid intake during pregnancy are important
for brain development and hypothalamic function
in the offspring. Hypothalamic dysfunction was
observed in the offspring of mice and rats born
to animals that consumed increased amounts of
saturated or trans fatty acids [132, 133]. Excessive
nutrition usually activates hypothalamic inflamma-
tory signaling through increased endoplasmic re-
ticulum stress in the hypothalamus, which serves as
a mechanism for the energy imbalance underlying
obesity [76]. In obese pregnant women, offspring
have increased level of inflammation in the hypo-
thalamus [58] due to elevated levels of circulating
fatty acids [134-138]. It has been suggested that fat-
ty acids play an important role in the hypothalamic
dysfunction observed in offspring born to mothers
who consume increased amounts of saturated or
trans fatty acids, and the mechanisms underlying
these changes may be related to endoplasmic reti-
culum stress and hypothalamic inflammation.

Nowadays, the role of brain-derived neuro-
trophic factor and peptide YY in regulation at the
maternal-placenta-fetal level in maternal obesity
and their further effects on child growth and de-
velopment remain poorly understood [102, 113,
139-141].

THE IMPACT OF MATERNAL OBESITY
ON OFFSPRING HEALTH

In addition to adverse intrapartum and perina-
tal outcomes, maternal obesity is also associated
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with the development of chronic diseases in chil-
dren later in their life. In 1990, David Barker pro-
posed an "adult disease origins" model in which he
hypothesized that exposure to a suboptimal envi-
ronment early in life shapes an individual's future
health [80]. Initially, he showed that adults born
with low birth weight secondary to intrauterine
developmental delay due to inadequate nutrient
intake were at higher risk of developing metabo-
lic and cardiovascular diseases. Conversely, con-
ditions associated with intrauterine "overeating"
and increased inflammation, such as gestational
diabetes mellitus and maternal obesity, negative-
ly impact the long-term health of the offspring.
Evidence from recent studies suggests that activa-
tion of the proinflammatory state during pregnan-
cy is associated with long-term offspring diseases,
including childhood obesity, neuropsychiatric dis-
orders, and allergic diseases [135].
Neuropsychiatric disorders. In recent years,
there is increasing evidence that children born
to obese mothers are more prone to neurodeve-
lopmental and neuropsychiatric disorders. There
is evidence that children born to obese mothers
have lower intelligence quotient (IQ), higher rates
of autism spectrum disorders (ASD), attention
deficit hyperactivity disorder (ADHD), cerebral pal-
sy (CP), and mood disorders [45, 47, 136-138]. In
studies on animal models, maternal obesity more
often led to neuropsychiatric diseases in offspring,
which is associated with significant changes in
brain structure in the form of decreased prolife-
ration of neural precursors in the hippocampus,
reduced apoptosis in the hippocampus and neu-
ronal differentiation in the dentate gyrus, atrophy
of dendrites in the hippocampus and amygda-
la, and reduced myelination in the cerebral cor-
tex in offspring (predominantly male offspring)
[205-209]. It was also shown that offspring born
to obese mothers had problems in education, be-
havioral disorders in the form of hyperactivity,
anxiety, decreased sociability, addictive behav-
ior, and food intake disorders [139]. Edlow et al. in
their study found that the offspring of mice born
to obese animals had increased production of
TNF-a in response to polysaccharide exposure in
placental CD11b cells compared to control group
[140]. The increase in pro-inflammatory cytokines
was more significant in male offspring, which may
correlate with the prevalence of some neuropsy-
chiatric diseases associated with maternal obe-
sity in males [140-142]. From these findings, it
has been hypothesized that it is neuroinflamma-
tion and oxidative stress, which arise through in-
creased expression of proinflammatory cytokines,
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increased lipid peroxidation and microglia acti-
vation in offspring born to obese mothers, that
play an important role in adverse neurodevelop-
mental outcomes [26]. The pro-inflammatory envi-
ronment affects the metabolism of brain-derived
neurotrophic factor (BDNF), which is essential for
hippocampal neurogenesis. Alterations in BDNF
metabolism and tryptophan hydroxylase (TPH2)
expression are associated with anxiety disorder in
adulthood [29, 130].

Impact on the immune system. There is evi-
dence that maternal obesity and chronic inflam-
mation during pregnancy increase the risk of de-
veloping different chronic diseases in offspring.
A lot of such diseases have features of altered im-
mune/inflammatory activation [143-145]. Reviews
in recent years have provided evidence of altered
fetal immunity in response to maternal obesity
[36-38]. In a study conducted by Enninga et al. an
increased number of CD4+ lymphocytes and de-
creased levels of IL-12p40 and chemokines were
detected in the cord blood of infants born to obese
mothers [146]. In another small cohort study, cord
blood from the placenta of obese mothers showed
increased numbers of CD3+, CD4+, CD8+, NK and
CD8 + CD25 + Foxp3 + Treg lymphocyte subpo-
pulations, while CD34 cells were decreased [40].
Moreover, the effect of maternal obesity on de-
creased response of fetal monocytes and dendritic
cells to toll-like receptor ligands has been proved
[147]. The toll-like receptor family plays a key role
in the proinflammatory response to bacterial in-
fections; consequently, dysregulation of toll-like
receptor signaling is associated with bacterial dis-
eases, including necrotizing enterocolitis [148].
Most of these studies are performed using circu-
lating immune cells and probably do not reflect
the specificity of immune cells in different organ
systems. Kamimae-Lanning investigated the ef-
fect of maternal obesity on hematopoietic stem
cells (HSCs) and progenitor cells isolated from the
liver of fetal mice [149]. The results showed that
female mice that were continuously fed a high-fat
diet exhibited not only signs of adverse fetal pro-
gramming, including growth restriction, but also
a decrease in HSCs and progenitor cells in the fe-
tal liver. Despite the decrease in the total number
of HSCs and progenitor cells, the proportion of
B220+ lymphoid and Gr1+/Ter119+ myeloid cells
in the liver was increased, indicating a tendency
toward myeloid and B-cell differentiation [43].

Atopic diseases. Several studies and me-
ta-analyses show that children born to obese
mothers are at higher risk of developing atopic
diseases, including atopic dermatitis and bron-
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chial asthma [44-51]. Probably, this is due to al-
tered function of immune checkpoints in offspring
born to obese mothers that regulate development
of allergy. Elevated levels of maternal TNF-a and
pro-inflammatory cytokines, which are signifi-
cantly elevated in obese mothers, have been as-
sociated with frequent lower respiratory tract in-
fections and wheezing in offspring [52, 150]. In
animal models, MacDonald et al. showed that the
contents of bronchoalveolar lavage in offspring
born to obese mice had an increased percentage
of neutrophils and an increased concentration
of IL-6, which allowed them to propose a theory
about the role of the influence of an active proin-
flammatory state in reactive respiratory diseases in
children born to obese mothers [151]. In the same
study, increased bronchial hyperreactivity was
observed during methacholine provocation test
[34]. In 2019, Smoothy et al. found increased con-
centrations of Th1 (TNF-a) and Th2 (IL-5, IL-33) cy-
tokines in bronchoalveolar lavage of obese mice,
without any neutrophilia or eosinophilia, and it
was hypothesized that these mice are more prone
to hyperreactivity to further exposure to aller-
gens or exposure to viruses [152]. Another study
found that offspring born to obese mice exhibit-
ed an enhanced sensitization reaction in response
to allergen (ovalbumin) administration, which was
characterized by overproduction of IL-4, IL-13,
TNF-a and TGF-B1 [153]. The same study demon-
strated that mice born to obese mothers exhibit-
ed increased eosinophilic/neutrophilic infiltration
in the parenchyma of lungs, increased collagen
deposition and increased mucus hypersecretion
[56]. A study conducted by Castro-Rodriguez et
al. in 2020 showed an association of high levels of
leptin in cord blood with a higher risk of bronchi-
al asthma in children aged 3 years born to obese
mothers [154].

Cardiometabolic diseases. The effect of ma-
ternal obesity on the risk of cardiometabolic dis-
ease in offspring in childhood and adult life has
been demonstrated in human and animal models
[58, 155]. Cardiometabolic diseases are a complex
phenotype of cardiovascular and metabolic dys-
function characterized by insulin resistance, im-
paired glucose tolerance, dyslipidaemia, obesity,
arterial hypertension, and cardiovascular diseases.
Recent studies have demonstrated that children
born to obese mothers are at higher risk of fu-
ture cardiovascular disease (excluding congenital
heart disease) [155], and a positive correlation was
found between maternal pre-pregnancy BMI and
increased blood pressure in the child, regardless
of the child's BMI [23, 156]. In addition to cardio-
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vascular diseases, children born to obese mothers
are susceptible to developing of obesity at early
age. Evidence from observational studies of mo-
thers and their children in Europe, North America
and Australia showed that high maternal BMI be-
fore pregnancy and increased body weight during
pregnancy were associated with an increased risk
of overweight and obesity in offspring throughout
childhood [26]. Recent studies have demonstrated
the important role of levels of adipokine and leptin
in the formation of obesity in children and adults.
Obesity is associated with a state of hyperlep-
tinemia and decreased tissue sensitivity to leptin,
which subsequently leads to impaired regulation
of energy homeostasis [69]. Leptin is secreted into
the blood by adipocytes, regulates appetite, me-
tabolism and energy homeostasis, and increases
insulin secretion by pancreatic B-cells [157, 158].
During pregnancy, leptin levels regulate fetal de-
velopment and growth and are positively correla-
ted with neonatal body weight and fat mass [71-
75]. Several studies have shown that low levels
of cord blood leptin in children predict increased
body weight and body length at 2-3 years of age
[159]. Leptin and insulin control metabolism of
glucose by acting at peripheral and central units
[160]. Insulin is a key regulator of leptin metabo-
lism; hyperinsulinemia leads to an increase in se-
rum leptin concentrations [144-159]. Such infants
were more resistant to insulin with a positive corre-
lation with neonatal fat deposition [42, 94]. In the
view of fact, that leptin and insulin are factors that
influence the development of hypothalamus, ner-
vous system, and involved in appetite regulation.
It is shown that maternal obesity programs obesity
in their offspring with occurrence of hyperphagia.
The hyperphagia has been observed in several dif-
ferent rodent models of maternal obesity in both
male and female offspring [161]. Considered, that
this hyperphagic phenotype may be caused by al-
tered development and function of hypothalamic
circuits that regulate appetite and energy expend-
iture. The timing of the maximum level of neonatal
leptin in rodents is a critical window for the deve-
lopment and maturation of hypothalamic neural
connections, because the correct levels and timing
of influences are required for proper hypothala-
mic development. Thus, any influences that result
in under- or over-exposure to leptin during these
critical periods of development may have nega-
tive consequences. In animal models, newborn
rats born and obese animals have been shown to
have an enhanced and prolonged postnatal lep-
tin surge [162]. Studies both in human and ani-
mals show that maternal obesity has sex-specific
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effects on glucose metabolism and cardiometa-
bolic profiles in male offspring [163]. One theory
is differences in pancreatic B-cell function that are
partially associated with increased oxidative stress
in the islets of Langerhans and decreased plasma
estradiol levels in male offspring. Maternal obesity
induces insulin resistance and impairs pancreatic
-cell function, accompanied by inflammation in
adipose tissue and hepatic steatosis with marked
sex differences [91]. Estrogen in female offspring
may play a protective role against oxidative stress
induced by the effects of maternal obesity [164].

Diseases of urinary system. Recent studies
have shown an association between maternal
obesity and congenital abnormalities of the uri-
nary system and reduced volume of fetal kidney in
late pregnancy compared with fetal body weight
[93-95]. Since kidney volume is proposed as an
approximate measure of the number of nephrons,
maternal obesity may be associated with a re-
duction in the number of fetal nephrons, poten-
tially leading to hyperfiltration with further deve-
lopment of chronic kidney disease [165, 166]. In
contrast, a study in animal models (rats) showed
no effect on the number of fetal nephrons late
in pregnancy in obese females [108]. However,
there was evidence of increased cellular stress,
inflammation and apoptosis in the kidneys of fe-
tuses of obese females [167]. In the postnatal pe-
riod, studies in rodent have shown that offspring
from obese mothers show abnormalities in kid-
ney structure due to oxidative stress and fibrosis
[99-102, 168, 169]. A potential mechanism for pro-
gramming renal dysfunction in offspring is the de-
pression of sirtuin 1 (SIRT1) expression induced by
maternal obesity [170, 171]. Sirtuin 1 is a key regu-
lator that promotes lipid utilization and suppress-
es lipogenesis. It's well known, SIRT1 is reduced
in cells with high insulin resistance [109, 110].
Maternal obesity during intrauterine development
can lead to increased formation of glomeruloscle-
rosis in response to inflammation with further de-
cline in renal function [60].

Features of breastfeeding. Mother's milk re-
alizes the connection between the health of the
mother and the offspring. The triad "mother —
breast milk — infant" is a unified system, the ba-
sic mechanisms of which have not yet been fully
elucidated. The nature of nutrition of a pregnant
woman significantly affects the development of
the fetus, the state of health of the child in the
future. Obese women are less likely to initiate
breastfeeding than normal-weight women, and
are more at risk of lactation difficulties, which
may lead to discontinuation of breastfeeding [61].

EDITORIAL



ISSN 2221-2582

Lactation function in women with obesity is af-
fected by physiological (delayed lactogenesis or
reduced prolactin production in response to suck-
ling) and psychosocial factors [62-64]. The trophic
status of a lactating woman affects the composi-
tion of breast milk and, consequently, the rate of
growth and development of the infant. One of the
main sources of energy is lipids. A systematic re-
view of 11,373 publications found a positive cor-
relation between maternal BMI and the amount of
fat in breast milk. For every unit of maternal BMI,
0.56 g/L of fat was added to breast milk, and this
association was observed from the 1st to the 6th
month after delivery. There was no significant as-
sociation between maternal BMI and the energy
value of milk, lactose content and total protein
[168, 169]. There is also evidence that the milk of
an obese mother contributes to the formation of
components of metabolic syndrome in the child in
the future life.

MATERNAL OBESITY
AND GUT MICROBIOTA IN CHILDREN

The hypothesis that the gut microbiotais anim-
portant factor in the pathogenesis of obesity has
led to the investigation of its diversity in a group
of overweight and obese individuals. The first evi-
dence suggesting a link between the gut micro-
biota and obesity was suggested by Ley et al. in a
study using 16SrRNA genome sequencing. In their
work in animal models, they identified the two
most abundant types of bacteria, Firmicutes (60—
80%) and Bacteroidetes (20-40%), which differed
proportionally in obese mice compared to mice
with normal BMI [170]. Specifically, obese mice
showed a 50% decrease in the Bacteroidetes popu-
lation and a proportional increase in Firmicutes. Of
particular interest were the results which revealed
that after dietary treatment, the relative abun-
dance of Bacteroidetes increased and Firmicutes de-
creased [171-180]. Turnbaugh et al. confirmed the
increased ratio of Firmicutes and Bacteroidetes in
obese mice compared to lean mice in animal mo-
dels using the latest DNA metagenomic sequen-
cing technique [176, 179]. Moreover, obese mice
had a higher proportion of archaea in the microbial
communities of the caecum [43]. Armougom et al.
in their study evaluated the expression profiles of
gut microbiota using real-time PCR and found sig-
nificantly reduced levels of Bacteroidetes in obese
individuals compared to those with normal BMI,
whereas the concentration of Firmicutes was simi-
lar in the compared groups [173]. Species-specific
variations of Lactobacillus in patients with obesity,
such as L. reuteri and L. Gasseri, and lower concen-
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trations of Ruminococcus flavefaciens, a subgroup
of Ruminococcus flavefaciens belonging to the bac-
terial subdivision Firmicutes, were also observed in
obese individuals [45, 146]. In another study inves-
tigating the relationship between gut microbio-
ta, genotype and host’s weight, Turnbaugh et al.
analyzed the composition of the gut microbiota in
monozygotic and dizygotic twins with normal BMI
and obesity and their mothers [170]. The results
showed that obesity was associated with alow pro-
portion of Bacteroidetes and a higher proportion
of Actinobacteria in obese individuals compared
to lean people, but no differences in the phylum
Firmicutes were found between groups [176, 179].
Numerous studies in recent years have focused on
the dynamics of changes in the levels of the bac-
terial types Bacteroidetes and Firmicutes in people
both with obesity and loss of weight, but there are
researches linking obesity in mice to specific bac-
teria, particularly Halomonas and Sphingomonas,
and decreased numbers of Bifidobacteria [180]. A
special place in the genesis of obesity is also al-
located to archaea — Methanobrevibacter is the
main representative of archaea in the gut micro-
biota [149]. Zhang and Armougom et al. found
higher numbers of M. smithii in obese people com-
pared to a group of people with normal BMI [131,
138, 153, 178]. Currently, there are several puta-
tive mechanisms that contribute to the develop-
ment of obesity. The first is that different strains of
the gut microbiota are able to induce low-grade
inflammation by stimulating the production of
pro-inflammatory cytokines [181-196]. Gram-
negative bacteria such as Bacteroidetes produce
lipopolysaccharide (LPS, endotoxin), which is an
important component of the cell wall [197-215].
Cani et al. described that a high-fat diet increases
LPS levels, and observational studies have repor-
ted diurnal fluctuations in plasma LPS concentra-
tion, termed "metabolic endotoxemia" [216]. The
pattern of weight gains, visceral and subcutane-
ous obesity in LPS-injected mice was similar to
those observed in mice fed a high-fat diet [217]. In
addition, "metabolic endotoxemia" triggered the
expression of inflammatory cytokines and serum
amyloid A (SAA) proteins. Overgrowth of Gram-
negative bacteria such as Veillonella in obese in-
dividuals can lead to a higher dose of LPS in the
intestine, consequently it can disrupt the intesti-
nal barrier through activation of the TLR4/MyD88/
IRAK4 signaling pathway in intestinal epithelial
cells, resulting in the movement of LPS from the
intestine into the bloodstream [183, 184]. When
circulating systemically, LPS is able to initiate an
immune response in adipose tissue and liver. LPS
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first binds to lipopolysaccharide-binding protein,
forming a complex with CD14, further inducing the
expression of activator protein 1 and nuclear fac-
tor kappa B (NF-kB) by activating toll-like receptor
4 (TLR4), expressed on macrophages and adipose
tissue, which promotes the secretion of pro-in-
flammatory cytokines and chemokines including
TNF-q, IL-6, and monocyte chemoattractant pro-
tein-1 (MCP-1) [218, 219]. These cytokines can in-
fluence adipocytes and stimulate cytokine and
chemokine secretion by autocrine and paracrine
pathways [185-191, 220-224]. Moreover, MCP-1
overexpression in adipose tissue has been shown
to be associated with increased macrophage infil-
tration in rodents [225].

It's known, the gut microbiota is involved in
the central modulation of appetite through the
production of gut hormones such as peptide YY
(PYY), glucagon-like peptide-1 (GLP-1), and neu-
rotransmitters. Bifidobacterium and Lactobacillus
can produce lactate, which serves as a substrate
for neuronal cells, thereby prolonging the post-
prandial feeling of satiety [226]. Acetate is able
to activate the citric acid cycle in the hypotha-
lamus and further alter the expression profile of
neuropeptides regulating satiety [194]. Butyrate
affects appetite and eating behavior of the host
by activating the vagus nerve and hypothalamus,
it is able to cross the blood-brain barrier [193].
Bile acids, short-chain fatty acids and indoles are
closely related to the secretion of intestinal hor-
mones by neuroendocrine cells [195-198]. GLP-1
and PYY are the potent anorexigenic hormones
that can influence host appetite and eating be-
havior by binding to their receptors locally distri-
buted in intestinal neurons, vagus nerve afferents,
hypothalamus and brainstem [51, 199, 227-230].
The gut microbiota also leads to the production
of neurotransmitters, including y-aminobutyric
acid (GABA) and serotonin [37]. GABA, as the pre-
dominant inhibitory neurotransmitter of the ner-
vous system, has the ability to stimulate appetite,
while serotonin contributes to appetite suppres-
sion through regulation of melanocortin neurons
[200-204].

In addition, the gut microbiota influences the
food center and eating behavior through the re-
gulation of mood. On the one hand, gut microbio-
ta is able to alter mood by affecting the produc-
tion of bacterial metabolites, gut hormones and
neurotransmitters that act as important messen-
gers in gut-brain interactions and further regu-
late host appetite and eating behavior [47, 205].
On the other hand, the gut microbiota is involved
in the regulation of mood and reward pathways,
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which presumably influence brain circuits related
to eating behavior [206-210, 231].

MATERNAL OBESITY IN PREGNANCY
AND CHANGES IN GUT MICROBIOTA

The composition of gut microbiota in preg-
nant women with obesity differs from that of
pregnant women with normal BMI. Physiological
shifts in the gut microbiota during pregnancy are
necessary to adapt the mother to pregnancy and
promote optimal fetal growth and development.
During pregnancy on the background of obesity,
changes in the gut microbiota may lead to meta-
bolic disturbances of mother, which may indirect-
ly affect the growth and development of the child
and the establishment of its own gut microbiota
[211-218, 232-242]. Collado et al. in their study
observed significant differences in microbial com-
position in pregnant women depending on their
BMI. They found higher numbers of Bacteroides
and Staphylococcus aureus in obese women com-
pared to women with normal BMI [187, 243, 244].
Interestingly, the composition of the microbiota
varied with weight gain throughout pregnancy:
Bacteroides showed a positive correlation both
with pre-pregnancy BMI and with weight gain
during pregnancy; each kilogram of weight gain
was proportionally accompanied by an increase
in the number of Bacteroides by 0.006 logarith-
mic units [220-235]. Various studies have shown
that the gut microbiota remodels and fluctuates
during pregnancy depending on gestational age
[221, 236-238]. Zacarias et al. demonstrated that
pregnant women with obesity have a high ratio
of Firmicutes and Bacteroidetes, increased num-
bers of actinobacteria in the second and third
trimester of pregnancy, and decreased bacteri-
al diversity in the third trimester [239]. Santacruz
et al. studied the fecal microbiota of 50 pregnant
women (group 1 — overweight pregnant women,
group 2 — pregnant women with normal BMI) to
evaluate the relationship between changes in the
composition of the gut microbiota during preg-
nancy and biochemical parameters depending
on their BMI. It was found that higher concentra-
tion of Staphylococcus was significantly correla-
ted with increased serum cholesterol levels, high-
er number of Enterobacteriaceae and E. coli was
correlated with increased serum ferritin and de-
creased transferrin levels, while higher number
of Bifidobacterium was correlated with decreased
ferritin and increased transferrin and folic acid
levels. The number of Bacteroides was associated
with higher levels of cholesterol, HDL, and folic
acid [240].
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THE ROLE OF MATERNAL MICROBIOTA
IN PROGRAMMING OF BABY’S OBESITY

It is well known that the first microbial influ-
ence on the child is exerted by the maternal micro-
biota during pregnancy, suggesting that the ma-
ternal gut microbiota has a direct influence on the
child's gut microbiota and subsequent metabolic
and immunologic programming. Both animal and
human studies have shown that changes in the
diversity and abundance of gut microbial com-
position in obese mothers were associated with
changes in the gut microbiota of the offspring at
early and later ages. Soderborg et al. showed in
their study that germ-free mice colonized with
stool microbes from the stools of two-week-old
infants born to obese mothers had increased gut
permeability, impaired macrophage activity, and
increased inflammation compared to mice co-
lonized with stool microbes from infants born to
normal weight mothers [241]. In addition, these
mice showed accelerated body weight gain at fol-
low-up [242]. When comparing the gut microbiota
in obese and normal weight children, studies have
demonstrated an increased ratio of Firmicutes/
Bacteroidetes in the obese group [243, 244]. Recent
studies also show a decrease in the level of bifido-
bacteria in the intestinal microbiota in obese and
overweight children [245]. A study on 77 children
born to obese mothers and women with normal
BMI showed that the number of Parabacteroides
spp. and Oscillibacter spp. in the gut microbiota
was higher in children born to obese mothers. In
addition, amounts of Blautia spp. and Eubacterium
spp. were lower [245-251]. Vael et al. in a prospec-
tive study demonstrated high intestinal concen-
trations of Bacteroides fragilis and low concentra-
tions of Staphylococcus in infants aged from three
weeks to one year, which is associated with a high-
er risk of obesity later in life [247, 252]. Nadal et al.
found significantly reduced levels of Clostridium
hystoliticum, Eubacterium rectale and Clostridium
coccoides correlated with weight loss in obese
adolescents [253].

Changes in the gut microbiota of offspring
born to obese mothers are still controversial and
require further investigation.
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OOMOJIHUTENbHAA UHOOPMALUA

Bknap aBTopoB. Bce aBTOpbl BHeCnn cyuie-
CTBEHHbIN BKNaJ B pa3paboTKy KoHLenuuu, npo-
BelleHMe WCCefoBaHNA U MOArOTOBKY CTaTbW,
npounun n ofgobpunu GuHanbHy Bepcuto nepeq
nyonvkayuen.

KoHnuKT nHrepecoB. ABTOpbI AeKnapupyoT
OTCYTCTBUE ABHbIX Y MOTEHLUMANbHbBIX KOHGJIVKTOB
NHTEPEeCOB, CBA3aHHbIX C MybnuMkauuen HacTosA-
LLen cTaTbu.

UcTouHuK ¢uHaHcMpoBaHuA. ABTOPbI 3asB-
NAT 06 OTCYTCTBUN BHELWHETO GUHAHCUPOBAHMS
npv NpoBefeHNN NccrefoBaHus.
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