

УДК 616-073.756.8+614.876+615.849.5+616-05+311.312

АНАЛИЗ СТРУКТУРЫ И АППАРАТНОГО ПАРКА ЛУЧЕВОЙ ДИАГНОСТИКИ В ЛЕНИНГРАДСКОЙ ОБЛАСТИ ЗА ПЕРИОД 2010—2019 гг.

© Александр Валерьевич Водоватов^{1, 3}, Ольга Александровна Историк^{2, 3}, Иван Константинович Романович¹, Людмила Алексеевна Еремина², Полина Сергеевна Дружинина¹, Виктор Геннадьевич Пузырев³

- ¹ Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П.В. Рамзаева. 197101, г. Санкт-Петербург, ул. Мира, д. 8
- ² Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Ленинградской области. 192029, Санкт-Петербург, ул. Ольминского, д. 27
- ³ Санкт-Петербургский государственный педиатрический медицинский университет. 194100, г. Санкт-Петербург, ул. Литовская, д. 2

Контактная информация: Александр Валерьевич Водоватов — к.б.н., заведующий лабораторией радиационной гигиены медицинских организаций. E-mail: vodovatoff@gmail.com

Поступила: 16.04,2021 Одобрена: 14.06.2021 Принята к печати: 25.06.2021

РЕЗЮМЕ: Значимое снижение доз облучения пациентов при использовании источников ионизирующего излучения в медицине без потери диагностического качества изображений обеспечивается путем обоснования и оптимизации проведения рентгенорадиологических исследований (РРИ) посредством установления и применения референтных диагностических уровней (РДУ). Научно-практические основы для установления РДУ введены и детализированы во всех основополагающих отечественных нормативно-методических документах, регламентирующих обеспечение радиационной безопасности в медицине, однако на практике РДУ разрабатывались только в рамках отдельных региональных проектов. С 2018 г. пилотный проект по установлению РДУ реализуется в Ленинградской области, которая была выбрана в качестве субъекта Российской Федерации с аномально низкими уровнями облучения населения при медицинском облучении. В рамках первого этапа проекта был выполнен анализ структуры и аппаратного парка лучевой диагностики за период 2010-2019 гг. для идентификации региональных особенностей и выбора наиболее перспективных для сбора данных медицинских организаций. Исследование было выполнено посредством анализа радиационно-гигиенических паспортов Ленинградской области, региональных форм формы федерального государственного статистического наблюдения № 3-ДОЗ системы ЕСКИД и форм № 30 Министерства здравоохранения РФ. Результаты исследования показали, что в структуре лучевой диагностики Ленинградской области преобладают традиционные флюорографические и рентгенографические исследования. Вклад в структуру лучевой диагностики высокоинформативных высокодозовых видов исследований (рентгеноскопии, компьютерной томографии, интервенционных исследований) крайне низок; радионуклидная диагностика в медицинских организациях Ленинградской области не проводится. За последние 10 лет значимые изменения в структуре аппаратного парка отсутствуют, большая часть оборудования имеет срок эксплуатации менее 10 лет. Наблюдающийся рост числа РРИ в Ленинградской области ассоциирован в первую очередь с более интенсивным использованием аппаратного парка (с ростом числа исследований на один рентгеновский аппарат или компьютерный томограф).

Наиболее перспективными для проведения исследований по уровням облучения пациентов в лучевой диагностике и внедрения комплекса мероприятий по снижению доз облучения пациентов являются те районы, в которых зафиксирован значительный рост числа наиболее распространенных РРИ на душу населения за последние 3—5 лет: Всеволожский, Гатчинский, Выборгский, Тихвинский и Киришский районы. Результаты исследования послужили основой для разработки дизайна сбора данных для оценки уровней облучения пациентов в Ленинградской области.

КЛЮЧЕВЫЕ СЛОВА: рентгенорадиологические исследования; медицинское облучение; пациенты; лучевая диагностика.

ANALYSIS OF THE X-RAY DIAGNOSTIC STRUCTURE AND EQUIPMENT IN THE LENINGRAD REGION IN 2010-2019

© Aleksandr V. Vodovatov^{1, 3}, Olga A. Istorik^{2, 3}, Ivan K. Romanovich¹, Lyudmila A. Eremina², Polina S. Druzhinina¹, Victor G. Puzyrev³

¹ Saint-Petersburg Research Institute of Radiation Hygiene named after Professor P.V. Ramzaev. 197101. Saint-Petersburg. Mira str., 8

² Federal service of surveillance on consumer rights protection and human well-being in Leningrad region. 192029, Saint-Petersburg, Olminskogo st., 27

³ Saint-Petersburg State Pediatric Medical University. 194100, Saint Petersburg, Litovskaya str., 2

Contact information: Aleksandr V. Vodovatov — PhD, Head of the Department of Radiation Protection.

E-mail: vodovatoff@gmail.com

Received: 16.04.2021 Revised: 14.06.2021 Accepted: 25.06.2021

ABSTRACT: Maximal reduction of the patient doses from medical exposure without the loss of diagnostic information can be achieved through justification and optimization of X-ray examinations by establishing and applying diagnostic reference levels (DRLs). Scientific and practical basis for the establishment of DRLs is implemented in all national regulatory documents on the radiation safety in medicine. However, in practice DRLs were developed only within the local regional projects. Starting from 2018, a pilot project on the establishment of the regional DRLs has been implemented in the Leningrad region, which was selected as the region of the Russian Federation with abnormally low patient doses from medical exposure. At the first stage of the project dynamics of the structure of the X-ray diagnostics and X-ray equipment in 2010-2019 was analyzed to identify the regional features of X-ray diagnostics and to select the districts and medical facilities for the detailed data collection and assessment. The study was performed based on the analysis of the data from the radiation-hygienic passports of the Leningrad region, regional statistical forms 3-DOZ and F-30. The results of the study indicate that the structure of the X-ray diagnostics in the Leningrad region is dominated by the traditional fluorography and radiography examinations. The contribution of modern highly informative high-dose examinations (fluoroscopy, computed tomography, interventional examinations) is extremely low, nuclear medicine examinations are absent. For the last 10 years there were no significant differences in the structure of the X-ray equipment; the majority of X-ray and CT units are less than 10 years in operation. The increase in the number of X-ray examinations in the Leningrad region is associated with more intensive use of the X-ray equipment (increase in the number of X-ray examinations per one X-ray or CT unit). The results of the study allowed selecting districts that are most perspective for the patient dose surveys and implementation of the optimization procedures. These districts (Vsevolozhskiy, Gatchinskiy, Vyborgskiy, Tihvinskiy and Kirishskiy) are associated with the maximal increase in the number of the typical X-ray examinations per capita in the last 3–5 years. Results of the study were used as a base for the development of the design of the patient dose surveys in the medical facilities in the Leningrad region.

KEY WORDS: medical exposure; X-ray examinations; patients; X-ray diagnostics.

ВВЕДЕНИЕ

Медицинское облучение пациентов по своему вкладу в коллективную дозу населения России является вторым после природных источников и первым среди техногенных источников излучения [4, 8]. Особенностью радиационной защиты от этого вида облучения является неприменимость нормирования доз облучения пациентов. Значимое снижение доз пациентов при использовании источников ионизирующего излучения в медицине без потери диагностического качества изображений обеспечивается путем обоснования и оптимизации проведения рентгенорадиологических исследований (РРИ) посредством установления и применения референтных диагностических уровней (РДУ). В отечественных нормативно-методических документах концепция РДУ была впервые тезисно введена в ОСПОРБ 99/2010 и детализирована в MP 2.6.1.0066-12 «Применение референтных диагностических уровней для оптимизации радиационной защиты пациента в рентгенологических исследованиях общего назначения» и MP 2.6.1.0097-15 «Оптимизация радиационной защиты пациентов в интервенционной радиологии» [10, 11, 14]. РДУ как часть системы обеспечения качества в лучевой диагностике введены в МУК 2.6.7.3651-20 «Методы контроля в ПЭТ-диагностике для оптимизации радиационной защиты» и МУК 2.6.7.3652-20 «Методы контроля в КТ-диагностике для оптимизации радиационной защиты» [6, 7]. Требования к оптимизации и обеспечению качества в лучевой диагностике включены в проект СанПиН «Специальные санитарные правила в области радиационной безопасности».

Концепция РДУ успешно применяется в зарубежных странах начиная с 90-х гг. ХХ века [29]. К сожалению, детально проработанные методические основы для установления и применения РДУ и оптимизации проведения РРИ за последние десять лет на практике реализованы не были, за исключением отдельных региональных проектов [1, 27, 28, 30]. Это объясняется в первую очередь тем, что для установления РДУ необходимо обладать достоверной информацией об эффективных дозах пациентов, детализированных на уровне отдельного рентгеновского аппарата или компьютерного томографа. При этом расчет эффективных доз должен основываться на результатах измерений радиационного выхода рентгеновского аппарата/произведения дозы на площадь и учитывать структуру и параметры проведения

РРИ в данном рентгеновском кабинете [1, 27, 28, 30]. Существующий же подход к определению доз облучения пациентов главным образом направлен на обеспечение заполнения формы федерального государственного статистического наблюдения № 3-ДОЗ № 3-ДОЗ системы ЕСКИД [8, 9]. Применение его с целью установления РДУ и проведения оптимизационных мероприятий затруднительно в связи с чрезмерной упрощенностью метода, не учитывающего значительное количество параметров проведения РРИ, непосредственно влияющих на дозы облучения пациентов.

С 2018 г. в рамках отдельного пилотного проекта подготовительная работа к установлению РДУ на региональном уровне проводится на базе Ленинградской области. Ленинградская область является одним из субъектов Российской Федерации с аномально низкими уровнями облучения населения в медицине. Так, средняя эффективная доза от медицинского облучения на душу населения в 2019 г. в Ленинградской области составила 0,22 мЗв, что почти в три раза ниже, чем в среднем по Российской Федерации (0,6 мЗв) [24]. Данное обстоятельство может быть связано как с особенностями структуры лучевой диагностики (низкий вклад современных высокоинформативных высокодозовых исследований), так и с различными процедурными ошибками в области оценки уровней облучения пациентов на уровне отдельного рентгеновского аппарата и медицинских организаций в целом, что неизбежно сказывается на достоверности сведений, представленных в форме 3-ДОЗ.

Установление РДУ и разработка методических основ для оптимизации с учетом региональной специфики включает следующие этапы:

- анализ текущего состояния структуры медицинского облучения и аппаратного парка для лучевой диагностики в регионе;
- анализ имеющихся данных по уровням облучения пациентов при проведении различных рентгенорадиологических исследований в регионе;
- разработка дизайна исследования и проведение сбора данных, необходимых для оценки эффективных доз пациентов при проведении наиболее распространенных рентгенорадиологических исследований;
- верификация уровней облучения пациентов по результатам сбора данных, определение перспективных направлений для оптимизации радиационной защиты пациентов;

разработка комплекса мероприятий с учетом региональной специфики, направленных на снижение доз облучения пациентов и внедрение его в практику.

Данная статья является частью цикла статей по оптимизации радиационной защиты пациентов при медицинском облучении в Ленинградской области и включает в себя результаты анализа трендов развития лучевой диагностики в Ленинградской области за последнее десятилетие.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Выполнить оценку структуры и аппаратного парка для лучевой диагностики в медицинских организациях Ленинградской области за период 2010–2019 гг.

МЕТОДЫ ИССЛЕДОВАНИЯ

Для оценки структуры медицинского облучения и аппаратного парка Ленинградской области был выполнен анализ данных по медицинскому облучению из радиационно-гигиенических паспортов Ленинградской области за последние 10 лет (период с 2009 по 2019 гг.) [15–24]. Анализ структуры лучевой диагностики в Ленинградской области был выполнен по следующим категориям РРИ: флюорография, рентгенография, рентгеноскопия, компьютерная томография и прочие (в том числе интервенционные) исследования [5, 25].

Для более детального анализа и сравнения отдельных районов Ленинградской области между собой использовали формы федерального государственного статистического наблюдения № 3-ДОЗ по отдельным медицинским организациям Ленинградской области, полученные из федерального банка данных Единой системы контроля и учета индивидуальных доз облучения граждан ФБУН НИИРГ им. П.В. Рамзаева [2] за период 2009–2019 гг. [5, 12]. Были выбраны медицинские организации (в основном центральные районные больницы), вносящие в совокупности более 95% вклада в общее число РРИ, выполненных в Ленинградской области за рассмотренный период. Сведения о рассмотренных медицинских организациях с разбивкой по отдельным районам Ленинградской области представлены в таблице 1.

Данные по материально-техническому оснащению кабинетов для лучевой диагностики были получены путем анализа таблиц 5117 «Аппараты и оборудование для лучевой диагностики» региональных форм федерального

статистического наблюдения № 30 «Сведения о медицинской организации» [13]. При этом раздельно учитывали оборудование со сроком эксплуатации более 10 лет.

Оценка числа РРИ на душу населения проводилась с использованием выражения 1:

$$N_{per\ capita} = \frac{N}{P},\tag{1}$$

где $N_{per\ capita}$ — число РРИ для выбранной категории на душу населения в выбранном году, шт.; N — число РРИ, выполненных в Ленинградской области в выбранном году, шт.; P — среднегодовая численность населения Ленинградской области в выбранном году, чел.

Сведения о среднегодовой численности населения Ленинградской области в целом и отдельных ее районов за период 2010—2019 гг. были получены с сайта Управления Федеральной службы государственной статистики по г. Санкт-Петербургу и Ленинградской области [26].

Анализ данных осуществляли статистическими методами с использованием программного обеспечения STATISTICA 10. Проверку распределений на нормальность проводили с использованием тестов Колмогорова-Смирнова (с поправкой на значимость Лиллефорса) и Шапиро-Вилка. Попарное сравнение отдельных параметров проводили с использованием U-теста Манна-Уитни. Сравнение выборок осуществляли с использованием однофакторного дисперсионного анализа с использованием критериев Краскелла-Воллиса и медианного теста. Результаты считали статистически значимыми при р <0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

1. Структура медицинского облучения и анализ аппаратного парка Ленинградской области

Сведения о структуре лучевой диагностики в Ленинградской области за период 2010–2019 гг. по данным радиационно-гигиенической паспортизации [15–24] представлены в таблице 2.

Динамика изменения вклада различных видов лучевой диагностики в структуру лучевой диагностики в Ленинградской области представлена на рисунке 1.

Сведения о количестве рентгенорадиологических процедур на душу населения в Ленинградской области за период 2012–2019 гг. по данным радиационно-гигиенической паспортизации [15–24] представлены в таблице 3.

ГИГИЕНА 47

Таблица 1

Медицинские организации, вошедшие в выборку для анализа

Table 1

Medical facilities selected for the detailed analysis

Район / District	Медицинские организации / Medical facilities
Бокситогорский /	ГБУЗ ЛО «Бокситогорская межрайонная больница» / GBUZ LO «Boksitogorsky Interdistrict
Boksitogorsky Волосовский /	Hospital» ГБУЗ ЛО «Волосовская межрайонная больница» / GBUZ LO «Volosovsky Interdistrict
Volosovsky	Hospital»
Волховский / Volkhovsky	ГБУЗ ЛО «Волховская межрайонная больница» / GBUZ LO «Volkhovsky Interdistrict Hospital»
Всеволожский / Vsevolozhsky	ГБУЗ ЛО «Всеволожская клиническая межрайонная больница» / GBUZ LO «Vsevolozhsky Interdistrict Hospital» ГБУЗ ЛО «Сертоловская городская больница» / GBUZ LO «Sertolovskaya City Hospital» ГБУЗ ЛО «Токсовская межрайонная больница» / GBUZ LO «Toksovskaya Interdistrict Hospital» ГБУЗ «Ленинградский областной клинический онкологический диспансер» / GBUZ «Leningrad Regional Clinical Oncological Dispensary»
Выборгский / Vyborgsky	ГБУЗ ЛО «Выборгская детская городская больница» / GBUZ LO «Vyborg Pediatric City Hospital» ГБУЗ ЛО «Светогорская районная больница» / GBUZ LO «Svetogorsk District Hospital» ГБУЗ ЛО «Выборгская межрайонная больница» / GBUZ LO «Vyborg Interdistrict Hospital» ГБУЗ АО «Приморская центральная районная больница» / GBUZ AO «Primorsk Central District Hospital» ГБУЗ ЛО «Рощинская межрайонная больница» / GBUZ LO «Roshchinskaya Interdistrict Hospital» ГКУЗ ЛО «Зеленохолмская туберкулезная больница» / GKUZ LO «Zelenokholmskaya Tuberculosis Hospital»
Гатчинский / Gatchinsky	ГБУЗ ЛО «Гатчинская клиническая межрайонная больница» / GBUZ LO «Gatchina Clinical Interdistrict Hospital» ГКУЗ ЛО «Дружносельская психиатрическая больница» / GKUZ LO «Druzhnoselskaya Psychiatric Hospital»
Кингисеппский / Kingiseppsky	ГБУЗ ЛО «Кингисеппская межрайонная больница» / GBUZ LO «Kingiseppsky Interdistrict Hospital»
Киришский / Kirishsky	ГБУЗ ЛО «Киришская клиническая межрайонная больница» / GBUZ LO «Kirishsky Clinical Interdistrict Hospital» ЛОГП «Киришская стоматологическая поликлиника» / LOGP «Kirishsky Dental Clinic»
Кировский / Kirovsky	МУЗ «Мгинская участковая больница» / MUZ «Mginsky District Hospital» ГБУЗ ЛО «Назийская районная больница» / GBUZ LO «Nazisky District Hospital» МБУЗ «Отрадненская центральная районная больница» / MBUZ «Otradnenskaya Central District Hospital» Кировский Клинический стоматологический центр / Kirovsky Clinical Dental Center Шлиссельбургская городская больница / Shlisselburgsky City Hospital ГБУЗ ЛО «Кировская межрайонная больница» / GBUZ LO «Kirovsky Interdistrict Hospital»
Лодейнопольский / Lodeynopolsky	ГБУЗ ЛО «Лодейнопольская межрайонная больница» / GBUZ LO «Lodeynopolskaya Iinterdistrict Hospital»
Ломоносовский / Lomonosovsky	ГБУЗ ЛО «Ломоносовская межрайонная больница» / GBUZ LO «Lomonosovsky Interdistrict Hospital»
Лужский / Luzhsky	ГБУЗ ЛО «Лужская межрайонная больница» / GBUZ LO «Luzhsky Interdistrict Hospital»
Подпорожский / Podporozhsky	ГБУЗ ЛО «Подпорожская межрайонная больница» / GBUZ LO «Podporozhskaya Interdistrict Hospital»
Приозерский / Priozersky	ГБУЗ ЛО «Приозерская межрайонная больница» / GBUZ LO «Priozersksky Interdistrict Hospital»
Сланцевский / Slantsevsky	ГБУЗ ЛО «Сланцевская межрайонная больница» / GBUZ LO «Slantsevsky Interdistrict Hospital»
Тихвинский / Tikhvinsky	ГБУЗ ЛО «Тихвинская межрайонная больница» / GBUZ LO «Tikhvinsky Interdistrict Hospital»
Tocнeнский / Tosnensky	ГБУЗ ЛО «Тосненская клиническая межрайонная больница» / GBUZ LO «Tosnensky General Interdistrict Hospital»

Таблица 2

Структура лучевой диагностики в Ленинградской области за период 2010–2019 гг. по данным радиационно-гигиенической паспортизации

Table 2

Structure of X-ray diagnostics in the Leningrad region in 2010–2019 based on the data from radiation-hygienic passports

Fa- /		Вид лучевой ді	иагностики / Т	Type of X-ray d	liagnostics		D /
Год / Year	ФЛГ / FLG	PΓ / RG	PC / FE	KT / CT	PHД / RND	прочие / other	Всего / Total
2010	839 575	1 400 393	5819	7130	_	67	2 252 984
2011	819 155	1 438 618	9780	15 587	_	70	2 283 210
2012	1 137 173	1 500 477	7374	24 050	_	952	2 670 026
2013	822 088	1 644 901	5932	58 773	_	11603	2 543 297
2014	775 201	1 630 163	5083	79 745	_	1626	2 91 818
2015	785 697	1 925 347	5285	71 422	_	6173	2 793 924
2016	749 960	1 576 060	8498	75 237	_	5790	2 415 545
2017	788 422	1 601 741	6047	79 088	_	4455	2 479 753
2018	864 983	1 782 408	4864	100 985	_	2432	2 755 672
2019	993 963	1 670 804	4195	138 183	_	4256	2 811 401

Примечание: Φ ЛГ — флюорографические исследования / FLG — fluorography (chest screening) examinations; PГ — рентгенографические исследования / RG — radiography examinations; PC — рентгеноскопические исследования / FE — fluoroscopy examinations; KT — компьютерная томография / CT — computed tomography examinations; PНД — радионуклидные исследования / RND — diagnostic nuclear medicine examinations; прочие — интервенционные/специальные исследования / Other — interventional and special examinations.

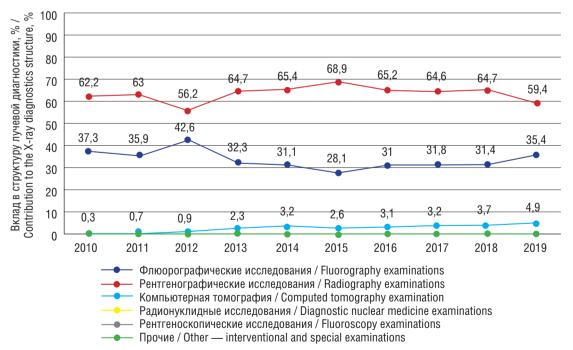


Рис. 1. Динамика вклада различных видов лучевой диагностики в структуру лучевой диагностики в Ленинградской области в период 2010–2019 гг.

Fig. 1. Dynamics of the contribution of different imaging modalities to the structure of X-ray diagnostics in the Leningrad region in 2010–2019

Таблица 3

Количество рентгенорадиологических процедур на душу населения в Ленинградской области по видам лучевой диагностики за период 2010–2019 гг.

Table 3
The number of X-ray examinations per capita in the Leningrad Region in 2010–2019

Год / Year	Населе- ние ЛО¹ / Population of LO	ФЛГ / FLG	PΓ/RG	PC / FE	КТ / СТ	PHД/ RND	Прочие / Other	Всего / Total
2010	1 704 900	0,5	0,8	0,003	0,004	_	0,00004	1,3
2011	1 718 600	0,5	0,8	0,006	0,009	_	0,00004	1,3
2012	1 733 907	0,7	0,9	0,004	0,01	_	0,001	1,5
2013	1 751 135	0,5	0,9	0,003	0,03		0,007	1,5
2014	1 763 924	0,4	0,9	0,003	0,05	_	0,001	1,4
2015	1 775 540	0,4	1,1	0,003	0,04	_	0,003	1,6
2016	1 778 857	0,4	0,9	0,005	0,04	-	0,003	1,4
2017	1 791 916	0,4	0,9	0,003	0,04	_	0,002	1,4
2018	1 813 816	0,5	1,0	0,003	0,06	_	0,001	1,5
2019	1 847 867	0,5	0,9	0,002	0,07	-	0,002	1,5

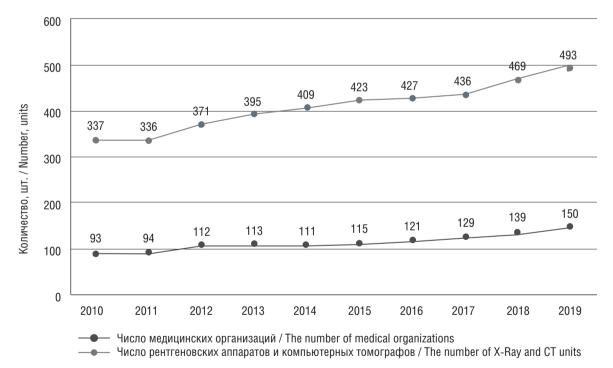


Рис. 2. Динамика изменения числа медицинских организаций и рентгеновских аппаратов/компьютерных томографов в Ленинградской области за период 2010–2019 гг.

Fig. 2. Dynamics of changes in the number of medical facilities and X-ray / CT units in the Leningrad region in 2010-2019

¹ http://petrostat.old.gks.ru/wps/wcm/connect/rosstat_ts/petrostat/ru/statistics/Leningradskaya_area/population/

Как следует из данных, представленных на рисунке 1 и в таблице 3, в структуре лучевой диагностики Ленинградской области преобладают флюорографические и рентгенографические исследования (35,4 и 59,4%, соответственно, на 2019 г.). Число высокоинформативных высокодозовых видов исследований (рентгеноскопии, компьютерной томографии, интервенционных исследований) чрезвычайно мало: 40-70 компьютерных томографий, 3-4 рентгеноскопических исследования и 1-2 исследования категории «прочие» на 1000 чел. Радионуклидная диагностика в медицинских организациях Ленинградской области за рассмотренный период не проводилась. На одного жителя Ленинградской области в среднем приходится 1,5 рентгенорадиологических исследования в год, что существенно ниже, чем в среднем по Российской Федерации, для которой данный показатель равен 2 [23].

Динамика изменения числа медицинских организаций, эксплуатирующих источники ионизирующего излучения, и числа рентгеновских аппаратов и компьютерных томографов по данным радиационно-гигиенической паспортизации [15–24] представлена на рисунке 2.

За период 2013–2018 гг. был проведен детальный анализ аппаратного парка Ленинградской области по данным формы № 30 Министерства здравоохранения РФ. Данную форму заполняют все государственные медицинские организации (45 медицинских организаций по данным Комитета здравоохранения Ленинградской области) [3]. Результаты анализа представлены в таблицах 4, 5.

Вклад рентгеновских аппаратов старше 10 лет (устаревших) в аппаратный парк медицинского оборудования в Ленинградской области значимо за период 2013–2018 гг. не менялся (тест Краскелла-Воллиса, р >0,05) и

составляет в среднем 18% (от 23% в 2013 г. до 16,5% в 2018 г.). Все компьютерные томографы являются современными (со сроком эксплуатации менее 10 лет). Следует отметить, что общее число рентгеновских аппаратов, представленных в форме № 30 по Ленинградской области, существенно отличается (тест Манна-Уитни, р <0,05) в меньшую сторону, по сравнению с данными из радиационно-гигиенических паспортов Ленинградской области (рис. 2). Это обусловлено тем, что форму № 30 заполняют только государственные медицинские организации; радиационно-гигиенические паспорта — все медицинские организации, в том числе и подведомственные другим ведомствам.

Анализ данных, представленных в таблицах 4 и 5, показывает, что аппаратный парк медицинских организаций Ленинградской области за рассматриваемый период не претерпел существенных изменений за исключением:

- сокращения числа аналоговых флюорографов на фоне увеличения числа цифровых флюорографов;
- сокращения числа аналоговых дентальных аппаратов на фоне увеличения числа цифровых дентальных аппаратов.

При этом число рентгеновских аппаратов старше 10 лет остается примерно на одном и том же уровне (тест Краскелла–Воллиса, р <0,05); большинство (более 80%) цифровых аппаратов для рентгенографии, рентгеноскопии и интервенционных исследований (включая рентгенохирургию с применением аппаратов по типу С-дуга) являются современными с периодом эксплуатации менее 10 лет. Следует отметить как ограниченное число (колебания на уровне 20–25 аппаратов), так и некоторую примитивность (подавляющее число аппаратов представлено 16-срезовыми компьютерными

Таблица 4 Динамика изменения числа компьютерных томографов в Ленинградской области за период 2013–2018 гг. Table 4

Dynamics in the number of CT-units in the Leningrad region in 2013–2018

-			0 0	,		
Тип оборудования / CT unit type	2013	2014	2015	2016	2017	2018
Пошаговые / Axial	1	0	0	0	1	0
Спиральные односрезовые / Spiral single-slice	2	2	1	1	1	1
Менее 16 срезов / Less than 16 slices	2	2	3	3	2	2
16 срезов / 16 slices	13	14	13	15	16	15
32-64 срезов / 32-64 slices	3	3	3	3	3	5
64–128 срезов / 64–128 slices	0	0	1	2	2	2

Таблица 5

Table 5

Динамика изменения числа рентгеновских аппаратов в Ленинградской области за период 2013-2018 гг.

Dynamics in the number of X-ray units in the Leningrad region in 2013-2018

		2013 2014				2015 201		2016		2017		2018
Тип оборудования / Туре of X-ray equipment	Bcero / Total	фок эксплуа- тации >10 лет / Effective life > 10 years	Bcero / Total	cpok экс- плуатации >10 лет / Effec- tive life > 10 years	Bcero / Total	срок эксплуа- тации >10 лет / Effective life >10 years	Bcero/ Total	cpok эксплуа- тации >10 лет / Effective life > 10 years	Bcero / Total	cpok экс- nayaranun >10 ner / Effective life > 10 years	Bcero/ Total	cpok экс- nayaranun >10 aer / Effective life > 10 years
Цифровые телеуправляемые поворотные столы-штативы с функцией ренттеноскопии / Digital telecontrolled units with fluoroscopy function	6	0	10	0	10	0	10	0	18	1	15	1
Аналоговые телеуправляемые поворотные столы-штативы с функцией рентгеноскопии / Analogue telecontrolled units with fluoroscopy function	14	2	12	2	11	-	17	3	11	2	12	9
Рентгенодиагностические комплексы на 3 рабочих места / X-ray units for 3 workplaces	52	19	50	18	56	23	50	22	47	22	47	22
Цифровые рентгенодиагностические комплексы для рентгенографии / Digital X-ray units for radiography	2	0	38	10	21	5	13	2	16	4	15	3
Аналоговые рентгенодиагностические комплексы для рентгенографии / Analogue X-ray units for radiography	99	19	38	13	57	22	64	24	58	23	61	24
Рентгенодиагностические комплексы на 1 рабочее место / X-ray units for 1 workplace	4	1	0	0	∞	3	7	2	10	4	4	1
Цифровые флюорографы / Digital fluorographs	45	3	51	9	54	6	59	13	64	16	61	13
Пленочные флюорографы / Analogue fluorographs	21	12	12	7	11	9	8	S	4	2	2	1
Палатные аппараты / Mobile X-Ray units	70	14	85	22	80	24	79	23	77	27	84	29
Передвижные рентгенотелевизионные установки типа С-дуга / Mobile C-arm units	18	9	22	2	25	2	25	2	28	3	21	9
Цифровые маммографы / Digital mammographs	7	0	7	0	8	1	10	0	12	0	13	0
Пленочные маммографы / Analogue mammographs	31	13	34	14	29	10	32	14	29	13	28	12
Цифровые дентальные аппараты / Digital dental X-ray units	2	0	10	2	12	2	15	2	14	2	25	5
Пленочные дентальные аппараты / Analogue dental X-ray units	58	20	48	16	55	20	35	12	39	14	25	7
Антиографические аппараты / Angiographic units	3	0	4	0	4	0	4	0	4	0	5	1

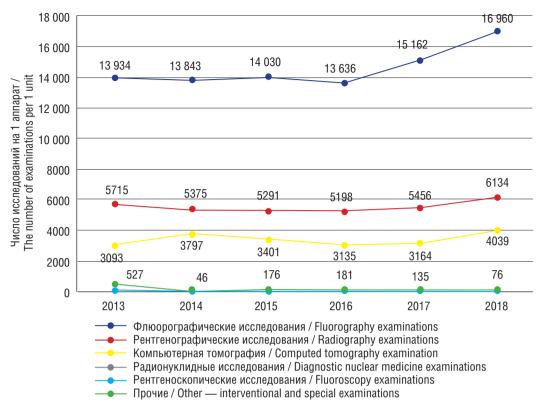


Рис. 3. Динамика изменения числа РРИ на 1 аппарат для различных методов лучевой диагностики в Ленинградской области за период 2013–2018 гг.

Fig. 3. Dynamics of the number of X-ray examinations per 1 unit for different methods of X-ray diagnostics in the Leningrad region in 2013-2018

томографами) аппаратного парка для компьютерной томографии.

Тем не менее по данным, представленным в таблице 2, с 2017 г. в Ленинградской области отмечается уверенный рост числа всех РРИ за исключением рентгенографий. Для определения потенциальных причин такого роста была проведена оценка динамики числа РРИ по видам на 1 рентгеновский аппарат или компьютерный томограф. Динамика числа исследований на 1 аппарат для различных методов лучевой диагностики в Ленинградской области за период 2013–2018 гг. представлена на рисунке 3.

Как следует из рисунка 3, рост числа РРИ в Ленинградской области ассоциирован в первую очередь с более интенсивным использованием аппаратного парка (с ростом числа исследований на один рентгеновский аппарат или компьютерный томограф).

Результаты оценки динамики изменения числа рентгенорадиологических исследований, а также изменения числа рентгенорадиологических исследований на душу населения в отдельных районах Ленинградской области

(табл. 1) за период 2009–2019 гг. представлены в таблицах 6–13 соответственно.

Изменение числа компьютерно-томографических, рентгенографических и флюорографических исследований в выбранных районах Ленинградской области за период 2010—2019 гг. представлены в таблицах 8 и 9 соответственно.

Из данных, представленных в таблицах 6–13, возможно сделать следующие выводы.

• Все рассмотренные районы Ленинградской области отличаются крайне неоднородным распределением числа рентгенорадиологических исследований как в абсолютных значениях, так и в количестве исследований на душу населения. На 2019 г. по абсолютным показателям лидируют Всеволожский, Выборгский и Гатчинский районы; по числу исследований на душу населения — Тихвинский и Киришский районы. Минимальное количество рентгенорадиологических исследований в 2019 г. как в абсолютных значениях, так и в расчете на душу населения было выполнено в Ломоносовском,

Таблица 6

Изменение числа рентгенорадиологических исследований в отдельных районах Ленинградской области за период 2009–2019 гг.

Table 6

The change in the number of radiological examinations in selected districts of the Leningrad Region in 2009–2019

	Число	рентген	юрадиол	огическі	их исслед	цований,	шт. / Th	e numbe	r of X-ray	y examin	ations
Район / District	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Бокситогорский / Boksitogorsky	1 9489	19 723	15 749	16 039	18 747	38 875	38 696	38 078	34 126	20 349	41 090
Волосовский / Volosovsky	17 017	35 740	16 946	31 676	31 798	32 607	33 272	30 394	30 079	32 649	32 056
Волховский / Volkhovsky	47 136	43 467	45 265	45 216	43 177	57 196	52 420	78 519	74 989	70 424	81 845
Всеволожский / Vsevolozhsky	70 017	77 083	95 429	124 246	107 327	134 398	235 079	180 394	203 488	26 3831	431 699
Выборгский / Vyborgsky	123 579	91 192	138 019	135 101	119 208	112 063	145 672	127 172	175 835	181 508	220 859
Гатчинский / Gatchinsky	58 192	3098	205 736	156 250	179 113	221 231	186 783	212 254	221 892	146 088	252 084
Кингисеппский / Kingiseppsky	10 355	72 249	74 380	74 899	77 552	84 228	84477	86 445	80 887	92 421	96 452
Киришский / Kirishsky	27 330	90 470	65 187	63 136	82 216	93 598	88 966	93 698	95645	91 526	95 782
Кировский / Kirovsky	133 729	97 799	84 756	123 156	195 528	140583	109 175	103 950	97 044	120 526	118 964
Лодейнопольский / Lodeynopolsky	28 819	30 879	27 923	25 262	738	23720	46 625	36 891	33543	46175	38 660
Ломоносовский / Lomonosovsky	12 245	9709	10 518	_*	8863	_*	_*	_*	3431	6664	5183
Лужский / Luzhsky	46 590	27 238	50 131	50 739	46 595	51 267	55 180	47 651	46 425	50 786	53 829
Подпорожский / Podporozhsky	27 099	26 860	29 400	27 668	27 678	23 891	28 293	28 816	28 566	31 998	30 698
Приозерский / Priozersky	53 720	57 591	54 259	58 364	54 666	54 821	59 210	59 704	56 299	55 841	51 154
Сланцевский / Slantsevsky	60 223	4374	53 896	4318	55 463	55 866	53 801	53 554	51 028	57 165	55 107
Тихвинский / Tikhvinsky	68 239	67 288	70 651	66 755	74 390	87 832	94 485	99 469	99 591	105 487	11 8003
Тосненский / Tosnensky	88 218	91 729	93 503	85 517	81 362	90 558	90 511	91 075	49 440	144 401	144 284

^{*} Данные отсутствуют / No data.

Волосовском и Подпорожском районах. Следует отметить Ломоносовский район, в котором за весь рассмотренный период число выполненных рентгенорадиологических исследований аномально низкое.

• В большинстве районов Ленинградской области в период 2010–2019 гг. прослеживается тенденция к увеличению обще-

го числа РРИ как в абсолютных значениях, так и на душу населения: в среднем в полтора—два раза; в отдельных районах (Всеволожский, Гатчинский, Кингисеппский) — до пяти—восьми раз. В Кировском и Ломоносовском районах число РРИ наоборот сократилось вплоть до полутора раз.

Таблииа 7

Изменение числа рентгенорадиологических исследований на душу населения в отдельных районах Ленинградской области за период 2009–2019 гг.

Table 7
The change in the number of radiological examinations per capita in selected districts of the Leningrad Region in 2009–2019

Район / District		Число		орадиол The num						ия, шт. /	
	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Бокситогорский / Boksitogorsky	0,37	0,37	0,3	0,31	0,36	0,76	0,76	0,76	0,68	0,41	0,85
Волосовский / Volosovsky	0,34	0,72	0,34	0,62	0,62	0,63	0,64	0,59	0,58	0,63	0,62
Волховский / Volkhovsky	0,49	0,45	0,48	0,48	0,45	0,61	0,57	0,86	0,83	0,79	0,93
Всеволожский / Vsevolozhsky	0,27	0,29	0,36	0,45	0,38	0,45	0,76	0,55	0,57	0,66	0,98
Выборгский / Vyborgsky	0,61	0,45	0,67	0,66	0,58	0,55	0,71	0,63	0,87	0,91	1,11
Гатчинский / Gatchinsky	0,25	0,01	0,87	0,65	0,73	0,9	0,76	0,86	0,91	0,6	1,06
Кингисеппский / Kingiseppsky	0,13	0,93	0,94	0,95	0,97	1,06	1,07	1,1	1,03	1,21	1,29
Киришский / Kirishsky	0,43	1,41	1,01	0,97	1,27	1,45	1,39	1,47	1,53	1,47	1,56
Кировский / Kirovsky	1,32	0,96	0,83	1,18	1,87	1,34	1,04	0,99	0,92	1,14	1,12
Лодейнопольский / Lodeynopolsky	0,94	1	0,92	0,84	0,02	0,79	1,57	1,26	1,16	1,62	1,38
Ломоносовский / Lomonosovsky	0,17	0,14	0,15	_*	0,13	-	_	_	0,05	0,09	0,07
Лужский / Luzhsky	0,6	0,35	0,64	0,66	0,61	0,68	0,74	0,64	0,64	0,71	0,76
Подпорожский / Podporozhsky	0,85	0,85	0,94	0,89	0,9	0,78	0,94	0,97	0,99	1,13	1,11
Приозерский / Priozersky	0,87	0,93	0,87	0,92	0,87	0,87	0,95	0,96	0,91	0,92	0,85
Сланцевский / Slantsevsky	1,38	0,1	1,24	0,1	1,28	1,27	1,23	1,24	1,19	1,35	1,3
Тихвинский / Tikhvinsky	0,96	0,94	1	0,94	1,05	1,25	1,35	1,43	1,42	1,52	1,7
Тосненский / Tosnensky	0,71	0,74	0,74	0,66	0,62	0,69	0,7	0,7	0,38	1,13	1,14

^{*} Данные отсутствуют / No data.

• Во всех районах Ленинградской области за период 2010–2019 гг. число компьютерно-томографических исследований значимо (вплоть до порядка величины) растет как в абсолютных значениях, так и на душу населения (тест Краскелла–Воллиса с дальнейшим попарным сравнением районов по го-

дам тестом Манна–Уитни, р >0,05). Минимальный рост зафиксирован в Тосненском районе — всего в два раза. Следует отметить, что в трех районах Ленинградской области (Волосовский, Ломоносовский и Подпорожский) по данным формы № 3-ДОЗ КТ-исследования не выполнялись вообще.

Таблица 8

Изменение числа компьютерно-томографических исследований в отдельных районах Ленинградской области за период 2010—2019 гг.

Table 8

The change in the number of CT-examinations in selected districts of the Leningrad Region in 2010–2019

B × /B: / · /		Чис	ло КТ-ис	следовани	ıй, шт. / Т	he numb	er of CT-e	xaminatio	ons	
Район / District	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Бокситогорский / Boksitogorsky	_*	_	_	_	_	_	523	1400	1083	1369
Волосовский / Volosovsky	_	_	_	_	_	_	_	_	_	_
Волховский / Volkhovsky	_	_	2864	5691	7531	8493	9054	1340	6409	7640
Всеволожский / Vsevolozhsky	940	2302	3427	10 507	15 168	17 419	15 903	13 908	15 997	31 054
Выборгский / Vyborgsky	_	2956	2538	2852	3398	5186	642	6887	10 195	10 672
Гатчинский / Gatchinsky	_	_	2951	9849	23 380	11 325	16 292	15 600	19 342	22 562
Кингисеппский / Kingiseppsky	_	1464	1488	866	2565	3889	4268	5150	5555	5563
Киришский / Kirishsky	_	_	_	2279	3543	3063	2948	3632	3584	3640
Кировский / Kirovsky	2228	4261	5396	14553	8165	3359	6647	6814	6852	7550
Лодейнопольский / Lodeynopolsky	_	_	_	_	1553	1909	2574	1814	2670	2843
Ломоносовский / Lomonosovsky	_	_	_	_	_	_	_	_	_	_
Лужский / Luzhsky	_	_	_	_	231	1564	2440	2546	2117	2005
Подпорожский / Podporozhsky	_	_	_	_	_	_	_	_	_	_
Приозерский / Priozersky	_	300	1209	1379	1845	1708	1321	1900	2525	2711
Сланцевский / Slantsevsky	_	_	_	_	_	_	_	_	1886	3047
Тихвинский / Tikhvinsky	_	_	_	4248	4461	5146	4965	3010	4375	9844
Тосненский / Tosnensky	2392	4189	3817	4339	5122	4204	2535	3433	3542	4596

^{*} Данные отсутствуют / No data.

- Во всех районах Ленинградской области за период 2010–2019 гг. число рентгенографических исследований в абсолютных значениях сокращалось вплоть до полутора—двух раз. Число рентгенографических исследований на душу населения в большинстве районов за период 2010–2019 гг.
- достоверно не изменялось (тест Краскелла–Воллиса, р <0,05), а в отдельных районах (Сланцевский, Тихвинский, Выборгский, Бокситогорский), напротив, выросло в среднем в два раза (вплоть до пяти раз).
- Число флюорографических исследований за период 2010–2019 гг. в абсолютных

Таблииа 9

Изменение числа компьютерно-томографических исследований на душу населения в отдельных районах Ленинградской области за период 2010–2019 гг.

Table 9
The change in the number of CT-examinations per capita in selected districts of the Leningrad Region in 2010–2019

Da Yana / Diatair t	Число	КТ-иссл	едований.	, шт. на 1	жителя /	The num	ber of CT-	examinat	ions per	capita
Район / District	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Бокситогорский / Boksitogorsky	_*	-	_	_	_	_	0,01	0,03	0,02	0,03
Волосовский / Volosovsky	_	_	_	_	_	_	_	_	_	_
Волховский / Volkhovsky	_	_	0,03	0,1	0,1	0,1	0,1	0,01	0,1	0,10
Всеволожский / Vsevolozhsky	0,004	0,01	0,01	0,04	0,05	0,06	0,05	0,04	0,04	0,07
Выборгский / Vyborgsky	-	0,01	0,01	0,01	0,02	0,03	0,003	0,03	0,05	0,05
Гатчинский / Gatchinsky	_	_	0,01	0,04	0,10	0,05	0,07	0,06	0,08	0,09
Кингисеппский / Kingiseppsky	_	0,02	0,02	0,01	0,03	0,05	0,05	0,07	0,07	0,07
Киришский / Kirishsky	_	_	_	0,04	0,05	0,05	0,05	0,06	0,06	0,06
Кировский / Kirovsky	0,02	0,04	0,05	0,14	0,08	0,03	0,06	0,06	0,06	0,07
Лодейнопольский / Lodeynopolsky	_	_	_	_	0,05	0,06	0,09	0,06	0,09	0,10
Ломоносовский / Lomonosovsky	-	_	_	_	_	_	_	_	_	_
Лужский / Luzhsky	_	_	_	_	0,003	0,02	0,03	0,04	0,03	0,03
Подпорожский / Podporozhsky	_	_	_	_	_	_	_	_	_	_
Приозерский / Priozersky	_	0,00	0,02	0,02	0,03	0,03	0,02	0,03	0,04	0,05
Сланцевский / Slantsevsky	_	_	_	_	_	_	_	_	0,04	0,07
Тихвинский / Tikhvinsky	_		_	0,06	0,06	0,07	0,07	0,04	0,06	0,14
Тосненский / Tosnensky	0,02	0,03	0,03	0,03	0,04	0,03	0,02	0,03	0,03	0,04

^{*} Данные отсутствуют / No data.

значениях в большинстве регионов осталось примерно на одном уровне (колебания в пределах $\pm 20\%$); достоверные различия отсутствуют (тест Краскелла—Воллиса, р <0,05). Исключением являются Бокситогорский, Волховский и Всеволожский районы, в которых число флюорографий как в абсолютных значениях, так и в расчете на душу населения выросло более чем в полтора раза.

Наиболее перспективными для проведения детализированного сбора данных по дозам облучения пациентов являются районы, в которых за период 2010—2019 гг. был зафиксирован максимальный рост числа рентгенографических и флюорографических исследований на душу населения и максимальное количество выполненных компьютерных томографий. Под данные критерии попадают Всеволож-

TNINEHA 57

Таблица 10

Изменение числа рентгенографических исследований в отдельных районах Ленинградской области за период 2010–2019 гг.

Table 10

The change in the number of X-Ray examinations in selected districts of the Leningrad Region in 2010–2019

Da Yara / Distanta	Число	рентгено	графичес	ских иссле	дований,	шт. / The 1	number of	radiograp	hy exami	nations
Район / District	2019	2018	2017	2016	2015	2014	2013	2012	2011	2010
Бокситогорский / Boksitogorsky	31 040	32 286	26 328	28 291	27 405	27 976	10 094	7840	6896	14 081
Волосовский / Volosovsky	18 190	33 799	28 279	24 068	25 752	25 439	23 978	23 132	26 184	27 147
Волховский / Volkhovsky	65 251	61 944	61 060	57 834	40 341	40 384	37 960	36 004	40 782	40 006
Всеволожский / Vsevolozhsky	208 196	228 578	177 670	151 419	383 910	101 580	97 398	88 325	78 879	67 717
Выборгский / Vyborgsky	164 749	150 854	144 107	124 128	134 992	113 856	125 330	129 685	124 303	75 736
Гатчинский / Gatchinsky	201 612	266 553	220 936	199 446	184 708	177 923	197 151	186 220	213 584	4480
Кингисеппский / Kingiseppsky	75 190	78 332	65 015	65 952	64 997	67 169	63 514	57 161	54 809	25 352
Киришский / Kirishsky	85 624	65 482	77 515	72 777	70 616	68 337	60 837	34 852	41 453	76 440
Кировский / Kirovsky	128 560	130 920	109 703	120 012	218 066	236 742	270 367	154 809	97 312	93 278
Лодейнопольский / Lodeynopolsky	36 040	47 071	31 409	30 534	48 338	14 248	3628	16 217	17 562	21 892
Ломоносовский / Lomonosovsky	6622	8133	4449	_*	_	_	5260	_	5665	4982
Лужский / Luzhsky	50 106	50 249	43 760	45 198	52 091	47 192	43 641	46 247	45 123	0
Подпорожский / Podporozhsky	24 183	32 402	22 777	27 352	26 962	21 362	24 706	20 585	20 856	17 183
Приозерский / Priozersky	42 573	48 479	47 676	50 372	54 143	54 053	50 017	51 106	42 842	48 012
Сланцевский / Slantsevsky	56 183	62 504	48 520	57 310	60 765	61 709	53 803	9068	52 822	8862
Тихвинский / Tikhvinsky	120 684	89 324	89 530	96 300	83 406	77 617	53 911	48 520	52 321	54 239
Тосненский / Tosnensky	58 565	84 420	66 124	74 386	75 572	76 159	57 459	75 279	72 441	75 532

^{*} Данные отсутствуют / No data.

ский, Гатчинский, Выборгский, Тихвинский и Киришский районы.

ЗАКЛЮЧЕНИЕ

Лучевая диагностика в Ленинградской области отличается рядом особенностей, которые необходимо учитывать при проведении крупномасштабного сбора данных по уровням облучения пациентов:

- преобладание в структуре лучевой диагностики традиционных флюорографических и рентгенографических исследований;
- крайне низкий вклад в структуру лучевой диагностики высокоинформативных высокодозовых видов исследований (рент-

5B HYGIENE

Таблииа 11

Изменение числа рентгенографических исследований на душу населения в отдельных районах Ленинградской области за период 2010—2019 гг.

Table 11
The change in the number of X-Ray examinations per capita in selected districts of the Leningrad Region in 2010–2019

Район /		Число рентгенографических исследований, шт. на 1 жителя / The number of radiography examinations per capita												
District	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019				
Бокситогорский / Boksitogorsky	0,3	0,1	0,2	0,2	0,5	0,5	0,6	0,5	0,7	0,6				
Волосовский / Volosovsky	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,7	0,4				
Волховский / Volkhovsky	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,7	0,7	0,7				
Всеволожский / Vsevolozhsky	0,3	0,3	0,3	0,3	0,3	1,2	0,5	0,5	0,6	0,5				
Выборгский / Vyborgsky	0,4	0,6	0,6	0,6	0,6	0,7	0,6	0,7	0,8	0,8				
Гатчинский / Gatchinsky	0,01	0,9	0,8	0,8	0,7	0,8	0,8	0,9	1,1	0,8				
Кингисеппский / Kingiseppsky	0,3	0,7	0,7	0,8	0,8	0,8	0,8	0,8	1,0	1,0				
Киришский / Kirishsky	1,2	0,6	0,5	0,9	1,1	1,1	1,1	1,2	1,1	1,4				
Кировский / Kirovsky	0,9	1,0	1,5	2,6	2,3	2,1	1,1	1,0	1,2	1,2				
Лодейнопольский / Lodeynopolsky	0,7	0,6	0,5	0,1	0,5	1,6	1,0	1,1	1,7	1,3				
Ломоносовский / Lomonosovsky	0,1	0,1	_*	0,1	_	_	_	0,1	0,1	0,1				
Лужский / Luzhsky	_	0,6	0,6	0,6	0,6	0,7	0,6	0,6	0,7	0,7				
Подпорожский / Podporozhsky	0,5	0,7	0,7	0,8	0,7	0,9	0,9	0,8	1,1	0,9				
Приозерский / Priozersky	0,8	0,7	0,8	0,8	0,9	0,9	0,8	0,8	0,8	0,7				
Сланцевский / Slantsevsky	0,2	1,2	0,2	1,2	1,4	1,4	1,3	1,1	1,5	1,3				
Тихвинский / Tikhvinsky	0,8	0,7	0,7	0,8	1,1	1,2	1,4	1,3	1,3	1,7				
Тосненский / Tosnensky	0,6	0,6	0,6	0,4	0,6	0,6	0,6	0,5	0,7	0,5				

^{*} Данные отсутствуют / No data.

геноскопии, компьютерной томографии, интервенционных исследований);

- отсутствие радионуклидной диагностики в медицинских организациях Ленинградской области;
- отсутствие значимых изменений в структуре аппаратного парка лучевой диагностики за последнее десятилетие;
- крайне неоднородная структура лучевой диагностики в отдельных районах Ленинградской области.

Как показывают результаты исследования, рост числа РРИ в Ленинградской области ассоциирован в первую очередь с более интенсивным использованием аппаратного парка (с ростом числа исследований на один рент-

TNTNEHA 5:

Таблица 12

Изменение числа флюорографических исследований в отдельных районах Ленинградской области за период 2010–2019 гг.

Table 12

The change in the number of fluorography examinations in selected districts of the Leningrad Region in 2010–2019

Район /		Число Ф	ЛГ иссле	дований	, шт. / The	e number (of fluorog	raphy exa	minations	S
District	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Бокситогорский / Boksitogorsky	15 066	14 002	14 486	13 371	25 302	24 228	23 314	17 647	27 819	25 034
Волосовский / Volosovsky	27 113	_*	17 075	17 678	17 154	21 650	24 622	14 455	22 943	14 166
Волховский / Volkhovsky	19 995	19 935	19 639	21 791	23 722	21 279	36 104	36 876	32 200	31 699
Всеволожский / Vsevolozhsky	56 451	70 602	439 482	93 273	72 587	75 789	79 041	91 250	93 422	278 321
Выборгский / Vyborgsky	71 227	68 049	65 031	56 299	51 159	67 837	66 806	93 405	94 263	110 161
Гатчинский / Gatchinsky	_	152 064	66 364	78 323	83 438	106 352	81 529	88 916	87 644	82 523
Кингисеппский / Kingiseppsky	46 897	49 314	45 950	47 370	44 437	45 092	45 505	44 569	92 515	51 880
Киришский / Kirishsky	53 721	52 803	52 144	49 900	55 413	46 255	49 024	49 466	46 038	42 461
Кировский / Kirovsky	45 220	49 191	45 243	41 266	49 742	39 161	30 243	22 349	36 845	35 333
Лодейнопольский / Lodeynopolsky	15 423	15 482	17 200	_	17 245	14 032	16 005	16 416	15 346	15 534
Ломоносовский / Lomonosovsky	7132	7660	_	6069	_	_	_	_	_	_
Лужский / Luzhsky	43 094	24 161	31 722	35 276	36 598	36 361	28 428	29 624	31 871	38 980
Подпорожский / Podporozhsky	15 017	16 876	13 103	14 104	13 724	13 861	21 137	12 784	14 050	15 631
Приозерский / Priozersky	32 324	31 556	29 107	27 024	27 167	31 660	35 892	31 689	33 696	30 577
Сланцевский / Slantsevsky	-	29 693	-	28 027	27 064	22 049	29 151	30 185	30 160	27 925
Тихвинский / Tikhvinsky	38 835	41 754	39 872	39 457	37 434	45 493	46 052	49 159	47 987	46 382
Тосненский / Tosnensky	76 754	69 370	54 921	65 343	71 021	74 890	73 831	94 374	75 026	83 517

^{*} Данные отсутствуют / No data.

геновский аппарат или компьютерный томограф).

Наиболее перспективными для проведения исследований по уровням облучения пациентов в лучевой диагностике и внедрения комплекса мероприятий по снижению доз облучения пациентов являются те районы, в которых зафиксирован значительный рост числа наиболее распространенных рентгенорадиологических

исследований на душу населения за последние 3–5 лет: Всеволожский, Гатчинский, Выборгский, Тихвинский и Киришский районы.

ЛИТЕРАТУРА

1. Водоватов А.В. Практическая реализация концепции референтных диагностических уровней для оптимизации защиты пациентов при проведении стандарт-

Таблица 13

Изменение числа флюорографических исследований на душу населения в отдельных районах Ленинградской области за период 2010–2019 гг.

Table 13

The change in the number of fluorography examinations per capita in selected districts of the Leningrad Region in 2010–2019

Район / District	Число ФЛГ исследований, шт. на 1 жителя / The number of fluorography examinations per capita									
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Бокситогорский / Boksitogorsky	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,4	0,6	0,5
Волосовский / Volosovsky	0,5	0,00	0,3	0,3	0,3	0,4	0,5	0,3	0,4	0,3
Волховский / Volkhovsky	0,2	0,2	0,2	0,2	0,3	0,2	0,4	0,4	0,4	0,4
Всеволожский / Vsevolozhsky	0,2	0,3	1,6	0,3	0,2	0,2	0,2	0,3	0,2	0,6
Выборгский / Vyborgsky	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,5	0,5	0,6
Гатчинский / Gatchinsky	_*	0,6	0,3	0,3	0,3	0,4	0,3	0,4	0,4	0,3
Кингисеппский / Kingiseppsky	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	1,2	0,7
Киришский / Kirishsky	0,8	0,8	0,8	0,8	0,9	0,7	0,8	0,8	0,7	0,7
Кировский / Kirovsky	0,4	0,5	0,4	0,4	0,5	0,4	0,3	0,2	0,3	0,3
Лодейнопольский / Lodeynopolsky	0,5	0,5	0,6	_	0,6	0,5	0,5	0,6	0,5	0,6
Ломоносовский / Lomonosovsky	0,1	0,1	_	0,1	_	_	_	_	_	_
Лужский / Luzhsky	0,6	0,3	0,4	0,5	0,5	0,5	0,4	0,4	0,4	0,6
Подпорожский / Podporozhsky	0,5	0,5	0,4	0,5	0,4	0,5	0,7	0,4	0,5	0,6
Приозерский / Priozersky	0,5	0,5	0,5	0,4	0,4	0,5	0,6	0,5	0,6	0,5
Сланцевский / Slantsevsky	-	0,7	0,0	0,6	0,6	0,5	0,7	0,7	0,7	0,7
Тихвинский / Tikhvinsky	0,5	0,6	0,6	0,6	0,5	0,7	0,7	0,7	0,7	0,7
Тосненский / Tosnensky	0,6	0,5	0,4	0,5	0,5	0,6	0,6	0,7	0,6	0,7

^{*} Данные отсутствуют / No data.

- ных рентгенографических исследований. Радиационная гигиена. 2017; 10(1): 47–55.
- 2. Единая система контроля индивидуальных доз ЕСКИД. Организационная структура Федеральных банков. Доступно по: http://niirg.ru/ESKID.htm (дата обращения 06.05.2021).
- 3. Комитет по здравоохранению Ленинградской области. Государственные учреждения здравоохранения,
- подведомственные Комитету по здравоохранению Ленинградской области. Доступно по: https://health.lenobl.ru/ru/about/gup/gos_ych/ (дата обращения 06.05.2021).
- Медик В.А., Юрьев В.К. Общественное здоровье и здравоохранение. М.: Общество с ограниченной ответственностью Издательская группа «ГЭОТАР-Медиа»; 2012.

CNLNEHU 21

 Методические рекомендации «Заполнение формы федерального государственного статистического наблюдения № 3-ДОЗ». Доступен по: http://www. niirg.ru/PDF/MR_3-DOS_2013.pdf (дата обращения 01.03.2021).

- Методы контроля в КТ-диагностике для оптимизации радиационной защиты. Методические указания МУК 2.6.7.3652-20. М.: Роспотребнадзор; 2020.
- Методы контроля в ПЭТ-диагностике для оптимизации радиационной защиты. Методические указания МУК 2.6.7.3651-20. М.: Роспотребнадзор; 2020.
- Онищенко Г.Г., Попова А.Ю., Романович И.К. и др. Современные принципы обеспечения радиационной безопасности при использовании источников ионизирующего излучения в медицине. Часть 1. Тенденции развития, структура лучевой диагностики и дозы медицинского облучения. Радиационная гигиена. 2019; 12(1): 6–24. Доступен по: https://doi.org/10.21514/1998-426X-2019-12-1-6-24 (дата обращения 01.03.2021).
- Онищенко Г.Г., Попова А.Ю., Романович И.К. и др. Радиационно-гигиеническая паспортизация и ЕСКИД информационная основа принятия управленческих решений по обеспечению радиационной безопасности населения Российской Федерации: Сообщение 2. Характеристика источников и доз облучения населения Российской Федерации. Радиационная гигиена. 2017; 10(3): 18–35.
- 10. Оптимизация радиационной защиты пациентов в интервенционной радиологии. Методические рекомендации MP 2.6.1.0097–15. М.: Роспотребнадзор; 2015.
- Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010). СП
 2.6.1.2612-10: зарегистрирован 11 августа 2010 г. Регистрационный № 18115. Минюст России; 2010.
- 12. Приказ Минздрава РФ от 31.07.2000 № 298 «Об утверждении Положения о единой государственной системе контроля и учета индивидуальных доз облучения граждан». Доступен по: http://www.consultant.ru/document/cons_doc_LAW_98143/ (дата обращения 01.03.2021).
- 13. Приказ Росстата от 04.09.2015 № 412 «Об утверждении статистического инструментария для организации Министерством здравоохранения Российской Федерации федерального статистического наблюдения в сфере здравоохранения». Доступен по: http://www.consultant.ru/document/cons_doc_LAW_186071/(дата обращения 01.03.2021).
- Применение референтных диагностических уровней для оптимизации радиационной защиты пациента в рентгенологических исследованиях общего назначения. Методические рекомендации MP 2.6.1.0066-12.
 М.: Роспотребнадзор; 2012.
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2010 г. Радиационно-гигиенический паспорт Российской Федерации

- дерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2011.
- 16. Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2011 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2012
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2012 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2013.
- 18. Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2013 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2014.
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2014 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2015.
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2015 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2016.
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2016 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2017.
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2017 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2018.
- 23. Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2018 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2019.
- Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2019 г. Радиационно-гигиенический паспорт Российской Федерации. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2020.

 Синицына А.В., Гаврилов П.В., Синицын А.В., Михйлова С.В., Прибыток К.В., Синельникова Е.В. Оценка эффективности различных методов лучевой диагностики в выявлении туберкулеза у детей. Педиатр. 2017; 8(3): 94–100. DOI: 10.17816/PED8394-100.

- Управление Федеральной службы государственной статистики по г. Санкт-Петербургу и Ленинградской области. Население. Доступно по: http://petrostat. old.gks.ru/wps/wcm/connect/rosstat_ts/petrostat/ru/ statistics/Leningradskaya_area/population/ (дата обращения 10.04.2021).
- Чипига Л.А., Звонова И.А., Рыжкова Д.В. и др. Уровни облучения пациентов и возможные пути оптимизации ПЭТ-диагностики в России. Радиационная гигиена. 2017: 10(4): 31–43. Доступен по: https://doi.org/10.21514/1998-426X-2017-10-4-31-43 (дата обращения 01.03.2021).
- Chipiga L.A., Bernhardsson C. Patient doses in Computed Tomography examinations in two regions of the Russian Federation. Rad. Prot. Dos. 2016; 169(1–4): 240–244.
- Järvinen H., Vassileva J., Samei E. et al. Patient dose monitoring and the use of diagnostic reference levels for the optimization of protection in medical imaging: current status and challenges worldwide. Journal of Medical Imaging. 2017; 4 (3): 031214. DOI: 10.1117/1.
- 30. Vodovatov A.V., Balonov M.I., Golikov V.Yu. et al. Proposals for the establishment of national diagnostic reference levels for radiography for adult patients based on regional dose surveys in Russian Federation. Rad. Prot. Dos. 2017; 173 (1–3): 223–232.

REFERENCES

- Vodovatov A.V. Prakticheskaya realizatsiya kontseptsii referentnykh diagnosticheskikh urovney dlya optimizatsii zashchity patsientov pri provedenii standartnykh rentgenograficheskikh issledovaniy. [Practical implementation of the concept of reference diagnostic levels for optimizing patient protection during standard radiographic examinations]. Radiatsionnaya gigiena. 2017; 10(1): 47–55. (in Russian).
- Edinaya sistema kontrolya individual'nykh doz ESKID.
 Organizatsionnaya struktura Federal'nykh bankov. [Unified System for monitoring Individual Doses ESKID.
 Organizational structure of Federal banks]. Available at:
 http://niirg.ru/ESKID.htm (accessed 06.05.2021). (in Russian).
- Komitet po zdravookhraneniyu Leningradskoy oblasti. Gosudarstvennye uchrezhdeniya zdravookhraneniya, podvedomstvennye Komitetu po zdravookhraneniyu Leningradskoy oblasti. [The Health Committee of the Leningrad Region. State healthcare institutions subordinate to the Healthcare Committee of the Leningrad Region]. Available at: https://health.lenobl.ru/ru/about/gup/gos ych/ (accessed 06.05.2021). (in Russian).

4. Medik V.A., Yur'ev V.K. Obshchestvennoe zdorov'e i zdravookhranenie. [Public health and healthcare]. M.: Obshchestvo s ogranichennoy otvetstvennost'yu Izdatel'skaya gruppa "GEOTAR-Media"; 2012. (in Russian).

- 5. Metodicheskie rekomendatsii «Zapolnenie formy federal'nogo gosudarstvennogo statisticheskogo nablyudeniya № 3-DOZ». [Methodological recommendations "Filling out the form of the federal state statistical observation No. 3-DOZ"]. Available at: http://www.niirg.ru/PDF/MR_3-DOS_2013.pdf (accessed 01.03.2021). (in Russian).
- Metody kontrolya v KT-diagnostike dlya optimizatsii radiatsionnoy zashchity. Metodicheskie ukazaniya MUK 2.6.7.3652-20. [Control methods in CT diagnostics for optimizing radiation protection. Methodical instructions of MUC 2.6.7.3652-20]. Moskva: Rospotrebnadzor; 2020. (in Russian).
- Metody kontrolya v PET-diagnostike dlya optimizatsii radiatsionnoy zashchity. Metodicheskie ukazaniya MUK 2.6.7.3651-20. [Control methods in PET diagnostics for optimizing radiation protection. Methodical instructions of MUC 2.6.7.3651-20]. Moskva: Rospotrebnadzor; 2020. (in Russian).
- Onishchenko G.G., Popova A.Yu., Romanovich I.K. i dr.
 Sovremennye printsipy obespecheniya radiatsionnoy
 bezopasnosti pri ispol'zovanii istochnikov ioniziruyushchego izlucheniya v meditsine. Chast' 1. Tendentsii
 razvitiya, struktura luchevoy diagnostiki i dozy meditsinskogo oblucheniya. [Modern principles of ensuring
 radiation safety when using ionizing radiation sources in
 medicine. Part 1. Trends in the development, structure
 of radiation diagnostics and medical radiation doses].
 Radiatsionnaya gigiena. 2019; 12 (1): 6–24. Available
 at: https://doi.org/10.21514/1998-426X-2019-12-1-6-24
 (accessed 01.03.2021). (in Russian).
- 9. Onishchenko G.G., Popova A.Yu., Romanovich I.K. i dr. Radiatsionno-gigienicheskaya pasportizatsiya i ESKID informatsionnaya osnova prinyatiya upravlencheskikh resheniy po obespecheniyu radiatsionnoy bezopasnosti naseleniya Rossiyskoy Federatsii: Soobshchenie 2. Kharakteristika istochnikov i doz oblucheniya naseleniya Rossiyskoy Federatsii. [Radiation-hygienic certification and ESKID-information basis for making management decisions to ensure radiation safety of the population of the Russian Federation: Report 2. Characteristics of sources and doses of radiation exposure of the population of the Russian Federation]. Radiatsionnaya gigiena, 2017; 10 (3): 18–35. (in Russian).
- Optimizatsiya radiatsionnoy zashchity patsientov v interventsionnoy radiologii. Metodicheskie rekomendatsii MR 2.6.1.0097–15. [Optimization of radiation protection of patients in interventional radiology. Methodological recommendations of MP 2.6.1.0097-15]. Moskva: Rospotrebnadzor; 2015. (in Russian).
- 11. Osnovnye sanitarnye pravila obespecheniya radiatsionnoy bezopasnosti (OSPORB-99/2010). SP 2.6.1.2612-

10: zaregistrirovan 11 avgusta 2010 g. Registratsionnyy № 18115. [Basic sanitary rules for ensuring radiation safety (OSPORB-99/2010). SP 2.6.1.2612-10: registered on August 11, 2010 Registration number 18115]. Minyust Rossii; 2010. (in Russian).

- 12. Prikaz Minzdrava RF ot 31.07.2000 N 298 «Ob utverzhdenii Polozheniya o edinoy gosudarstvennoy sisteme kontrolya i ucheta individual'nykh doz oblucheniya grazhdan». [Order of the Ministry of Health of the Russian Federation of 31.07.2000 N 298 «On approval of the Regulations on the unified state system for monitoring and accounting for individual doses of radiation of citizens»]. Available at: http://www.consultant.ru/document/cons_doc_LAW_98143/ (accessed 01.03.2021). (in Russian).
- 13. Prikaz Rosstata ot 04.09.2015 N 412 «Ob utverzhdenii statisticheskogo instrumentariya dlya organizatsii Ministerstvom zdravookhraneniya Rossiyskoy Federatsii federal'nogo statisticheskogo nablyudeniya v sfere zdravookhraneniya». [Order of Rosstat of 04.09.2015 N 412 «On approval of statistical tools for the organization by the Ministry of Health of the Russian Federation of federal statistical surveillance in the field of health»]. Available at: http://www.consultant.ru/document/congdoc LAW 186071/ (accessed 01.03.2021). (in Russian).
- 14. Primenenie referentnykh diagnosticheskikh urovney dlya optimizatsii radiatsionnoy zashchity patsienta v rentgenologicheskikh issledovaniyakh obshchego naznacheniya. Metodicheskie rekomendatsii MR 2.6.1.0066-12. [The use of reference diagnostic levels to optimize the radiation protection of the patient in general-purpose radiological studies. Methodological recommendations of MP 2.6.1.0066-12]. Moskva: Rospotrebnadzor; 2012. (in Russian).
- 15. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2010 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2010 Radiation and hygiene passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2011. (in Russian).
- 16. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2011 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2011 Radiation and hygiene passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2012. (in Russian).
- 17. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2012 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects

- of the Russian Federation for 2012. Radiation-hygienic passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2013. (in Russian).
- 18. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2013 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2013. Radiation-hygienic passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2014. (in Russian).
- 19. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2014 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2014. Radiation-hygienic passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2015. (in Russian).
- 20. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2015 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2015 Radiation and hygiene passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2016. (in Russian).
- 21. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2016 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2016. Radiation-hygienic passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2017. (in Russian).
- 22. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2017 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2017 Radiation and hygiene passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2018. (in Russian).
- 23. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2018 g. Radiatsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2018. Radiation-hygienic passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2019. (in Russian).
- 24. Rezul'taty radiatsionno-gigienicheskoy pasportizatsii v sub"ektakh Rossiyskoy Federatsii za 2019 g. Radia-

- tsionno-gigienicheskiy pasport Rossiyskoy Federatsii. [Results of radiation-hygienic certification in the subjects of the Russian Federation for 2019 Radiation and hygiene passport of the Russian Federation]. Moskva: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka; 2020. (in Russian).
- 25. Sinitsyna A.V., Gavrilov P.V., Sinitsyn A.V., Mikhylova S.V., Pribytok K.V., Sinel'nikova E.V. Otsenka effektivnosti razlichnykh metodov luchevoy diagnostiki v vyyavlenii tuberkuleza u detey. [Evaluation of the effectiveness of various methods of radiation diagnostics in the detection of tuberculosis in children]. Pediatrician. 2017; 8(3): 94–100. (in Russian).
- 26. Upravlenie Federal'noy sluzhby gosudarstvennoy statistiki po g. Sankt-Peterburgu i Leningradskoy oblasti. Naselenie. [The Federal State Statistics Service for St. Petersburg and the Leningrad Region. Population]. Available at: http://petrostat.old.gks.ru/wps/wcm/connect/rosstat_ts/petrostat/ru/statistics/Leningradskaya_area/population/ (accessed 10.04.2021). (in Russian).

- 27. Chipiga L.A., Zvonova I.A., Ryzhkova D.V. i dr. Urovni oblucheniya patsientov i vozmozhnye puti optimizatsii PET-diagnostiki v Rossii. [Patient exposure levels and possible ways to optimize PET diagnostics in Russia]. Radiatsionnaya gigiena. 2017: 10(4): 31–43. Available at: https://doi.org/10.21514/1998-426X-2017-10-4-31-43 (accessed 01.03.2021). (in Russian).
- Chipiga L.A., Bernhardsson C. Patient doses in Computed Tomography examinations in two regions of the Russian Federation. Rad. Prot. Dos. 2016; 169(1–4): 240–4.
- 29. Järvinen H., Vassileva J., Samei E. et al. Patient dose monitoring and the use of diagnostic reference levels for the optimization of protection in medical imaging: current status and challenges worldwide. Journal of Medical Imaging. 2017; 4(3): 031214. DOI: 10.1117/1.
- Vodovatov A.V., Balonov M.I., Golikov V.Yu. et al. Proposals for the establishment of national diagnostic reference levels for radiography for adult patients based on regional dose surveys in Russian Federation. Rad. Prot. Dos. 2017; 173(1–3): 223–232.