ВЛИЯНИЕ СОПУТСТВУЮЩИХ ЗАБОЛЕВАНИЙ НА ТЯЖЕСТЬ ТЕЧЕНИЯ COVID-19
Аннотация
Уже в начале пандемии было замечено влияние сопутствующих заболеваний на степень тяжести и исходы COVID-19. С тех пор большое внимание сосредоточено на проблемах коморбидности, связанных с инфекцией SARS-CoV-2, и долгосрочными последствиями COVID-19. Хронические заболевания, которые нарушают гомеостаз организма, делают пациентов более склонными к инфекциям. Наличие хронических заболеваний ассоциировано с более высокой степенью тяжести COVID-19 и более высоким риском смерти от данной инфекции. Помимо респираторных осложнений, новая коронавирусная инфекция связана с повышенным риском сердечно-сосудистых событий, таких как сердечные приступы, инфаркты, инсульты и тромбозы. Пациенты с ранее существовавшими артериальной гипертензией, сердечно-сосудистыми заболеваниями, диабетом и ожирением особенно восприимчивы к этим осложнениям. У пациентов, инфицированных вирусом SARS-CoV-2, наиболее распространенными сопутствующими хроническими заболеваниями, влияющими на развитие и прогноз, являются метаболические расстройства, такие как метаболический синдром, ожирение, гиперлипидемия и диабет, а также сердечно-сосудистые заболевания и артериальная гипертензия. Патофизиологические механизмы метаболических и сердечно-сосудистых заболеваний имеют в своей основе много общего с коронавирусной инфекцией. Вирус SARSCoV2 способен напрямую повреждать сердце и сосудистый эндотелий и вызывать системную воспалительную реакцию и протромботическое состояние, которые усугубляют сопутствующие сердечно-сосудистые заболевания. У многих пациентов, особенно пожилого возраста, имеются в анамнезе два или более хронических заболевания. Определение индивидуального вклада коморбидных заболеваний как факторов прогрессирования COVID-19 в тяжелые формы важно, так как предотвращение осложнений и неблагоприятных сердечно-сосудистых событий зависит от лежащих в их основе механизмов влияния на течение инфекции. В этом обзоре мы представляем существующую информацию о влиянии основных сопутствующих заболеваний на пациентов с COVID-19.
Литература
Patidar S., Mahor D., Dubey A. et al. Prognostic significance of comorbidities in COVID 19 patients. J Cardiovasc Dis Res. 2023; 14(5): 1944–50.
Gupta A., Marzook H., Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med. 2023; 23(2): 313–31. DOI: 10.1007/s10238-022-00821-4.
Müller-Wieland D., Marx N., Dreher M. et al. COVID-19 and cardiovascular comorbidities. Exp Clin Endocrinol Diabetes. 2022; 130(3): 178–89. DOI: 10.1055/a-1269-1405.
Santra D., Banerjee A., De S.K. et al. Relation of ACE2 with co-morbidity factors in SARS-CoV-2 pathogenicity. Comp Clin Path. 2023; 32(2): 179. DOI: 10.1007/s00580-023-03434-9.
Luo S., Zhang X., Xiao X. et al. Exploring potential biomarkers and molecular mechanisms of ischemic cardiomyopathy and COVID-19 comorbidity based on bioinformatics and systems biology. Int J Mol Sci. 2023; 24(7): 6511. DOI: 10.3390/ijms24076511.
Rief M., Eichinger M., West D. et al. Using cardiovascular risk indices to predict mortality in COVID-19 patients with acute respiratory distress syndrome: a cross sectional study. Sci Rep. 2023; 13(1): 11452. DOI: 10.1038/s41598-023-38732-3.
Owens C.D., Pinto C.B., Detwiler S. et al. Cerebral small vessel disease pathology in COVID-19 patients: A systematic review. Ageing Res Rev. 2023; 88: 101962. DOI: 10.1016/j.arr.2023.101962.
Ali A.S., Sheikh D., Chandler T.R. et al. Cardiovascular complications are the primary drivers of mortality in hospitalized patients with SARS-CoV-2 community-acquired pneumonia. Chest. 2023; 163(5): 1051–60. DOI: 10.1016/j.chest.2022.11.013.
Candel F.J., Barreiro P., Salavert M. et al. Expert consensus: main risk factors for poor prognosis in COVID-19 and the implications for targeted measures against SARS-CoV-2. Viruses. 2023; 15(7): 1449. DOI: 10.3390/v15071449.
Camacho Moll M.E., Mata Tijerina V.L., Silva Ramírez B. et al. Sex, age, and comorbidities are associated with SARS-CoV-2 infection, COVID-19 severity, and fatal outcome in a mexican population: a retrospective multi-hospital study. J Clin Med. 2023; 12(7): 2676. DOI: 10.3390/jcm12072676.
Patel S.R., Mukkera S.R., Tucker L. et al. Characteristics, comorbidities, complications, and outcomes among 802 patients with severe acute respiratory syndrome coronavirus 2 in a community hospital in Florida. Crit Care Explor. 2021; 3(5). DOI: 10.1097/CCE.0000000000000416.
McAlister F.A., Nabipoor M., Wang T., Bakal J.A. Emergency Visits or Hospitalizations for Cardiovascular Diagnoses in the Post-Acute Phase of COVID-19. JACC Adv. 2023; 2(6): 100391. DOI: 10.1016/j.jacadv.2023.100391.
Razipour S., El Hajjar A.H., Pottle C. et al. Cardiovascular comorbidities predispose to cardiovascular complications in hospitalized patients with COVID-19 infection. J Am Coll Cardiol. 2022; 79(9): 2135. DOI: 10.1016/S0735-1097(22)03126-6.
Zdanyte M., Martus P., Nestele J. et al. Risk assessment in COVID-19: prognostic importance of cardiovascular parameters. Clin Cardiol. 2022; 45(9): 943–51. DOI: 10.1002/clc.23883.
Delerue Matos A., Fonseca de Paiva A., Cunha C., Voss G. Precautionary behaviours of individuals with multimorbidity during the COVID-19 pandemic. Eur J Ageing. 2022; 19(4): 827–35. DOI: 10.1007/s10433-021-00632-8.
Коршунова А.А. Тромбо-геморрагические осложнения у больных с тяжелой формой новой коронавирусной инфекции COVID-19. Дис. ... канд. мед. наук: 3.1.18. СПб.; 2022.
Dissanayake H. COVID-19 and metabolic syndrome. Best Pract Res Clin Endocrinol Metab. 2023: 101753. DOI: 10.1016/j.beem.2023.101753.
Zhao Y., Han X., Li C. et al. COVID-19 and the cardiovascular system: a study of pathophysiology and interpopulation variability. Front Microbiol. 2023; 14: 1213111. DOI: 10.3389/fmicb.2023.1213111.
Omidi F., Hajikhani B., Kazemi S.N. et al. COVID-19 and cardiomyopathy: a systematic review. Front. Cardiovasc. Med. 2021; 8: 695206. DOI: 10.3389/fcvm.2021.695206.
Aluganti Narasimhulu C., Singla D.K. Mechanisms of COVID-19 pathogenesis in diabetes. Am. J. Physiol. Heart Circ. Physiol. 2022; 323(3): H403–20. DOI: 10.1152/ajpheart.00204.2022.
Discacciati M.G., Siani S., Campa A., Nakaya H.I. Why should obese youth be prioritized in COVID-19 vaccination programs? A nationwide retrospective study. Lancet Reg Health Am. 2022; 7: 100167. DOI: 10.1016/j.lana.2021.100167.
Raeisi T., Mozaffari H., Sepehri N. et al. The negative impact of obesity on the occurrence and prognosis of the 2019 novel coronavirus (COVID-19) disease: a systematic review and meta-analysis. Eat Weight Disord. 2022; 27(3): 893–911. DOI: 10.1007/s40519-021-01269-3.
Russell C.D., Lone N.I., Baillie J.K. Comorbidities, multimorbidity and COVID-19. Nat Med. 2023; 29(2): 334–43. DOI: 10.1038/s41591-022-02156-9.
Uribe-Querol E., Rosales C. Neutrophils actively contribute to obesity-associated inflammation and pathological complications. Cells. 2022; 11(12): 1883. DOI: 10.3390/cells11121883.
McKenna E., Wubben R., Isaza-Correa J.M. et al. Neutrophils in COVID-19: not innocent bystanders. Front. Immunol. 2022; 13: 864387. DOI: 10.3389/fimmu.2022.864387.
Wang Chau C., Sugimura R. Locked in a pro-inflammatory state. eLife. 2022; 11: e80699. DOI: 10.7554/eLife.80699.
Grewal T., Buechler C. Adipokines as diagnostic and prognostic markers for the severity of COVID-19. Biomedicines. 2023; 11(5): 1302. DOI: 10.3390/biomedicines11051302.
Martinez-Colon G.J., Ratnasiri K., Chen H. et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci. Transl. Med. 2022; 14(674): eabm9151. DOI: 10.1126/scitranslmed.abm9151.
Nandy K., Salunke A., Pathak S.K. et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr. 2020; 14(5): 1017–25. DOI: 10.1016/j.dsx.2020.06.064.
Li B., Yang J., Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531–8. DOI: 10.1007/s00392-020-01626-9.
Gupta R., Singh B., Gautam A. et al. SARS-COV-2 infection related mortality and comorbidities in a dedicated COVID-19 facility: a record based analysis from Uttar Pradesh. Asian J Med Sci. 2022; 13(3): 3–10. DOI: 10.3126/ajms.v13i3.41331.
Singh P., Bhaskar Y., Verma P. et al. Impact of comorbidity on patients with COVID-19 in India: A nationwide analysis. Front Public Health. 2023; 10: 1027312. DOI: 10.3389/fpubh.2022.1027312.
Kastora S., Patel M., Carter B. et al. Impact of diabetes on COVID-19 mortality and hospital outcomes from a global perspective: An umbrella systematic review and meta-analysis. Endocrinol Diabetes Metab. 2022; 5(3): e00338. DOI: 10.1002/edm2.338.
Manchanda V., Mitra S., Rafique I. et al. Is Omicron really mild? — Comparative analysis of comorbidities and disease outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants. Indian J Med Microbiol. 2023; 45: 100391. DOI: 10.1016/j.ijmmb.2023.100391.
Rawshani A., Kjölhede E.A., Rawshani A. et al. Severe COVID-19 in people with type 1 and type 2 diabetes in Sweden: A nationwide retrospective cohort study. Lancet Reg Health Eur. 2021; 4: 100105. DOI: 10.1016/j.lanepe.2021.100105.
Wong R., Hall M., Vaddavalli R. et al. Glycemic Control and Clinical Outcomes in U.S. Patients With COVID-19: Data From the National COVID Cohort Collaborative (N3C) Database. Diabetes Care. 2022; 45(5): 1099–1106. DOI: 10.2337/dc21-2186.
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021; 600(7889): 472–7. DOI: 10.1038/s41586-021-03767-x.
Llauradó G., Vlacho B., Wargny M. et al. The association between macrovascular complications and intensive care admission, invasive mechanical ventilation, and mortality in people with diabetes hospitalized for coronavirus disease-2019 (COVID-19). Cardiovasc Diabetol. 2022; 21(1): 216. DOI: 10.1186/s12933-022-01657-8.
Hadjadj S., Saulnier P.J., Ruan Y. et al. Associations of microvascular complications with all-cause death in patients with diabetes and COVID-19: The CORONADO, ABCD COVID-19 UK national audit and AMERICADO study groups. Diabetes Obes Metab. 2023; 25(1): 78–88. DOI: 10.1111/dom.14845.
Meister T., Kolde A., Fischer K. et al. A retrospective cohort study of incidence and risk factors for severe SARS-CoV-2 breakthrough infection among fully vaccinated people. Sci Rep. 2023; 13(1): 8531. DOI: 10.1038/s41598-023-35591-w.
Woodruff R.C., Garg S., George M.G. et al. Acute cardiac events during COVID-19-associated hospitalizations. J Am Coll Cardiol. 2023; 81(6): 557–69. DOI: 10.1016/j.jacc.2022.11.044.
Keller K., Sagoschen I., Konstantinides S. et al. Incidence and risk factors of myocarditis in hospitalized patients with COVID-19. J. Med. Virol. 2023; 95(3): e28646. DOI: 10.1002/jmv.28646.
Hobohm L., Sagoschen I., Barco S. et al. COVID-19 infection and its impact on case fatality in patients with pulmonary embolism. Eur. Respir. J. 2023; 61(1): 2200619. DOI: 10.1183/13993003.00619-2022.
Rubens M., Ramamoorthy V., Saxena A. et al. Hospital outcomes among COVID-19 hospitalizations with myocarditis from the California state inpatient database. Am. J. Cardiol. 2022; 183: 109–14. DOI: 10.1016/j.amjcard.2022.08.009.
Lundstrom K., Hromić-Jahjefendić A., Bilajac E. et al. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal. 2023; 101: 110495. DOI: 10.1016/j.cellsig.2022.110495.
Tedeschi D., Rizzi A., Biscaglia S., Tumscitz C. Acute myocardial infarction and large coronary thrombosis in a patient with COVID-19. Catheter Cardiovasc Interv. 2021; 97(2). DOI: 10.1002/ccd.29179.
Guan W.J., Liang W.H., Zhao Y. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020; 55(5). DOI: 10.1183/13993003.00547-2020.
Lippi G., Wong J., Henry B.M. Hypertension and its severity or mortality in coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020; 130: 304–9. DOI: 10.20452/pamw.15272.
Malik J.A., Ahmed S., Shinde M. et al. The impact of COVID-19 on comorbidities: a review of recent updates for combating it. Saudi J Biol Sci. 2022; 29(5): 3586–99. DOI: 10.1016/j.sjbs.2022.02.006.
John K.J., Mishra A.K., Ramasamy C. et al. Heart failure in COVID-19 patients: Critical care experience. World J Virol. 2022; 11(1): 1–19. DOI: 10.5501/wjv.v11.i1.1.
Makarova Y.A., Ryabkova V.A., Salukhov V.V. et al. Atherosclerosis, cardiovascular disorders and COVID-19: comorbid pathogenesis. Diagnostics (Basel). 2023; 13(3): 478. DOI: 10.3390/diagnostics13030478.
Kole C., Stefanou Ε., Karvelas N. et al. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther. 2023; 1–16. DOI: 10.1007/s10557-023-07465-w.
Yang Y., Wei Z., Xiong C., Qian H. Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update. Virol J. 2022; 19(1): 108. DOI: 10.1186/s12985-022-01833-y.
Mehta J., Nidhi J., Rawat J. Association of inflammatory markers in COVID-19 patients with and without comorbidity. Eur J Cardiovasc Med. 2023; 13(2): 1233–40. Website: https://www.healthcare-bulletin.co.uk/
Fachri M., Hatta M., Widowati E. et al. Correlations between comorbidities, chest x-ray findings, and C-Reactive protein level in patients with COVID-19. Ann Med Surg (Lond). 2022; 77: 103553. DOI: 10.1016/j.amsu.2022.103553.
Hashim Ibrahim Elbashir I., Kamal Ali Mohamed H., Adam Essa M.E., Seri A. Comparison between D-dimer levels in diabetic and non-diabetic positive COVID-19 adult patients: A hospital-based study. Endocrinol Diabetes Metab. 2022; 5(4): e349. DOI: 10.1002/edm2.349.
Thakkar C., Alikunju S., Niranjan N. et al. Klf9 plays a critical role in GR -dependent metabolic adaptations in cardiomyocytes. Cell Signal. 2023: 110886. DOI: 10.1016/j.cellsig.2023.110886.
Clark A., Jit M., Warren-Gash C. et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. Lancet Glob Health. 2020; 8(8): e1003–17. DOI: 10.1016/S2214-109X(20)30264-3.
Mutch C.P., Ross D.A., Bularga A. et al. Performance status: A key factor in predicting mortality in the first wave of COVID-19 in South-East Scotland. J R Coll Physicians Edinb. 2022; 52(3): 204–12. DOI: 10.1177/14782715221120137.
UK Office for National Statistics. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK. 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/7july2022
Agrawal U., Azcoaga-Lorenzo A., Fagbamigbe A.F. et al. Association between multimorbidity and mortality in a cohort of patients admitted to hospital with COVID-19 in Scotland. J R Soc Med. 2022; 115(1): 22–30. DOI: 10.1177/01410768211051715.
Chudasama Y.V., Zaccardi F., Gillies C.L. et al. Patterns of multimorbidity and risk of severe SARS-CoV-2 infection: an observational study in the U.K. BMC Infect Dis. 2021; 21(1): 908. DOI: 10.1186/s12879-021-06600-y.
Norris T., Razieh C., Zaccardi F. et al. Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19. Heart. 2022; 108(15): 1200–8. DOI: 10.1136/heartjnl-2021-320047.
Carmona-Pírez J., Gimeno-Miguel A., Bliek-Bueno K. et al. Identifying multimorbidity profiles associated with COVID-19 severity in chronic patients using network analysis in the PRECOVID Study. Sci Rep. 2022; 12(1): 2831. DOI: 10.1038/s41598-022-06838-9.
Hogarth M., John D., Li Y. et al. Clinical characteristics and comorbidities associated with SARS-CoV-2 breakthrough infection in the University of California Healthcare Systems. Am J Med Sci. 2023; 366(2): 102–13. DOI: 10.1016/j.amjms.2023.04.019.
Comoglu S., Kant A. Does the Charlson comorbidity index help predict the risk of death in COVID-19 patients? North Clin. Istanb. 2022; 9(2): 117–21. DOI: 10.14744/nci.2022.33349.
Szpulak A., Garlak U. Ćwirko H. et al. SARS-CoV-2 and its impact on the cardiovascular and digestive systems — The interplay between new virus variants and human cells. Comput Struct Biotechnol J. 2023; 21: 1022–9. DOI: 10.1016/j.csbj.2023.01.024.
Papageorgiou N., Sohrabi C., Prieto Merino D. et al. High sensitivity troponin and COVID-19 outcomes. Acta Cardiol. 2022; 77(1): 81–8. DOI: 10.1080/00015385.2021.1887586.
Siripanthong B., Asatryan B., Hanff T.C. et al. The pathogenesis and long-term consequences of COVID-19 cardiac injury. JACC Basic Transl Sci. 2022; 7(3): 294–308. DOI: 10.1016/j.jacbts.2021.10.011.
Bhatraju P.K., Ghassemieh B.J., Nichols M. et al. COVID-19 in critically ill patients in the Seattle region — case series. N Engl J Med. 2020; 382(21): 2012–22. DOI: 10.1056/NEJMoa2004500.
Alotaibi B.A., Aldali J.A., Aldali H.J. et al. The risk factors for acute cerebrovascular accident (stroke) in patients with severe acute respiratory syndrome coronavirus (SARS-CoV-2). Viruses. 2023; 15(5): 1140. DOI: 10.3390/v15051140.
Nannoni S., de Groot R., Bell S., Markus H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke. 2021; 16(2): 137–49. DOI: 10.1177/1747493020972922.
Artico J., Shiwani H., Moon J.C. et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: a prospective, multicenter, observational study. Circulation. 2023; 147(5): 364–74. DOI: 10.1161/CIRCULATIONAHA.122.060632.
Tessitore E., Carballo D., Poncet A. et al. Mortality and high risk of major adverse events in patients with COVID-19 and history of cardiovascular disease. Open Heart. 2021; 8(1): e001526. DOI: 10.1136/openhrt-2020-001526.
Barh D., Aljabali A.A., Tambuwala M.M. et al. Predicting COVID-19 — comorbidity pathway crosstalk-based targets and drugs: towards personalized COVID-19 management. Biomedicines. 2021; 9(5): 556. DOI: 10.3390/biomedicines9050556.
Linschoten M., Peters S., van Smeden M. et al. Cardiac complications in patients hospitalised with COVID-19. Eur Heart J Acute Cardiovasc Care. 2020; 9: 817–23. DOI: 10.1177/2048872620974605.
Tehrani D.M., Wang X., Rafique A.M. et al. Impact of cancer and cardiovascular disease on in-hospital outcomes of COVID-19 patients: results from the American heart association COVID-19 cardiovascular disease registry. Cardiooncology. 2021; 7(1): 28. DOI: 10.1186/s40959-021-00113-y.
Moey MYY., Hennessy C., French B. et al. COVID-19 severity and cardiovascular outcomes in SARS-CoV-2-infected patients with cancer and cardiovascular disease. Transl Oncol. 2023; 34: 101709. DOI: 10.1016/j.tranon.2023.101709.
Ramzi Z.S. Hospital readmissions and post-discharge all-cause mortality in COVID-19 recovered patients; a systematic review and meta-analysis. Am J Emerg Med. 2022; 51: 267–79. DOI: 10.1016/j.ajem.2021.10.059.
Zahid S., Khan M.Z., Shatla I. et al. Thirty-day cardiovascular readmissions following discharge with COVID-19: A US Nationwide Readmission Database analysis from the pandemic year 2020. CJC Open. 2023; 5(7): 554–66. DOI: 10.1016/j.cjco.2023.04.007.