INFLUENCE OF COMORBIDITIES ON THE SEVERITY OF COVID-19
Abstract
Early in the pandemic, the impact of comorbidities on the severity and outcomes of COVID-19 was noted. Since then, much attention has focused on the comorbidity issues associated
with SARS-CoV-2 infection and the long-term consequences of COVID-19. Chronic diseases that disrupt the body’s homeostasis make patients more prone to infections. Having chronic diseases is
associated with higher severity of COVID-19 and a higher risk of death from COVID-19. In addition to respiratory complications, COVID-19 is associated with an increased risk of cardiovascular
events such as heart attacks, myocardial infarctions, strokes and thrombosis. Patients with pre-existing hypertension, cardiovascular disease, diabetes, and obesity are particularly susceptible to these complications. The most common comorbid chronic diseases in patients infected with the SARSCoV- 2 coronavirus that affect development and prognosis are metabolic disorders such as metabolic syndrome, obesity, hyperlipidemia and diabetes, as well as hypertension and cardiovascular diseases. The pathophysiological mechanisms of metabolic and cardiovascular diseases have much in common with coronavirus infection. The SARS-CoV-2 virus is capable of directly damaging the heart and vascular endothelium and inducing a systemic inflammatory response and prothrombotic state that aggravate comorbid cardiovascular diseases. Many patients, especially older patients, have a history of two or more chronic diseases. identifying the individual contribution of comorbid diseases as factors in the progression of COVID-19 to severe forms is important, since the prevention of complications and adverse cardiovascular events depends on the underlying mechanisms of influence on the course of the infection. In this review, we present existing information on the impact of major comorbidities in patients with COVID-19.
References
Patidar S., Mahor D., Dubey A. et al. Prognostic significance of comorbidities in COVID 19 patients. J Cardiovasc Dis Res. 2023; 14(5): 1944–50.
Gupta A., Marzook H., Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med. 2023; 23(2): 313–31. DOI: 10.1007/s10238-022-00821-4.
Müller-Wieland D., Marx N., Dreher M. et al. COVID-19 and cardiovascular comorbidities. Exp Clin Endocrinol Diabetes. 2022; 130(3): 178–89. DOI: 10.1055/a-1269-1405.
Santra D., Banerjee A., De S.K. et al. Relation of ACE2 with co-morbidity factors in SARS-CoV-2 pathogenicity. Comp Clin Path. 2023; 32(2): 179. DOI: 10.1007/s00580-023-03434-9.
Luo S., Zhang X., Xiao X. et al. Exploring potential biomarkers and molecular mechanisms of ischemic cardiomyopathy and COVID-19 comorbidity based on bioinformatics and systems biology. Int J Mol Sci. 2023; 24(7): 6511. DOI: 10.3390/ijms24076511.
Rief M., Eichinger M., West D. et al. Using cardiovascular risk indices to predict mortality in COVID-19 patients with acute respiratory distress syndrome: a cross sectional study. Sci Rep. 2023; 13(1): 11452. DOI: 10.1038/s41598-023-38732-3.
Owens C.D., Pinto C.B., Detwiler S. et al. Cerebral small vessel disease pathology in COVID-19 patients: A systematic review. Ageing Res Rev. 2023; 88: 101962. DOI: 10.1016/j.arr.2023.101962.
Ali A.S., Sheikh D., Chandler T.R. et al. Cardiovascular complications are the primary drivers of mortality in hospitalized patients with SARS-CoV-2 community-acquired pneumonia. Chest. 2023; 163(5): 1051–60. DOI: 10.1016/j.chest.2022.11.013.
Candel F.J., Barreiro P., Salavert M. et al. Expert consensus: main risk factors for poor prognosis in COVID-19 and the implications for targeted measures against SARS-CoV-2. Viruses. 2023; 15(7): 1449. DOI: 10.3390/v15071449.
Camacho Moll M.E., Mata Tijerina V.L., Silva Ramírez B. et al. Sex, age, and comorbidities are associated with SARS-CoV-2 infection, COVID-19 severity, and fatal outcome in a mexican population: a retrospective multi-hospital study. J Clin Med. 2023; 12(7): 2676. DOI: 10.3390/jcm12072676.
Patel S.R., Mukkera S.R., Tucker L. et al. Characteristics, comorbidities, complications, and outcomes among 802 patients with severe acute respiratory syndrome coronavirus 2 in a community hospital in Florida. Crit Care Explor. 2021; 3(5). DOI: 10.1097/CCE.0000000000000416.
McAlister F.A., Nabipoor M., Wang T., Bakal J.A. Emergency Visits or Hospitalizations for Cardiovascular Diagnoses in the Post-Acute Phase of COVID-19. JACC Adv. 2023; 2(6): 100391. DOI: 10.1016/j.jacadv.2023.100391.
Razipour S., El Hajjar A.H., Pottle C. et al. Cardiovascular comorbidities predispose to cardiovascular complications in hospitalized patients with COVID-19 infection. J Am Coll Cardiol. 2022; 79(9): 2135. DOI: 10.1016/S0735-1097(22)03126-6.
Zdanyte M., Martus P., Nestele J. et al. Risk assessment in COVID-19: prognostic importance of cardiovascular parameters. Clin Cardiol. 2022; 45(9): 943–51. DOI: 10.1002/clc.23883.
Delerue Matos A., Fonseca de Paiva A., Cunha C., Voss G. Precautionary behaviours of individuals with multimorbidity during the COVID-19 pandemic. Eur J Ageing. 2022; 19(4): 827–35. DOI: 10.1007/s10433-021-00632-8.
Коршунова А.А. Тромбо-геморрагические осложнения у больных с тяжелой формой новой коронавирусной инфекции COVID-19. Дис. ... канд. мед. наук: 3.1.18. СПб.; 2022.
Dissanayake H. COVID-19 and metabolic syndrome. Best Pract Res Clin Endocrinol Metab. 2023: 101753. DOI: 10.1016/j.beem.2023.101753.
Zhao Y., Han X., Li C. et al. COVID-19 and the cardiovascular system: a study of pathophysiology and interpopulation variability. Front Microbiol. 2023; 14: 1213111. DOI: 10.3389/fmicb.2023.1213111.
Omidi F., Hajikhani B., Kazemi S.N. et al. COVID-19 and cardiomyopathy: a systematic review. Front. Cardiovasc. Med. 2021; 8: 695206. DOI: 10.3389/fcvm.2021.695206.
Aluganti Narasimhulu C., Singla D.K. Mechanisms of COVID-19 pathogenesis in diabetes. Am. J. Physiol. Heart Circ. Physiol. 2022; 323(3): H403–20. DOI: 10.1152/ajpheart.00204.2022.
Discacciati M.G., Siani S., Campa A., Nakaya H.I. Why should obese youth be prioritized in COVID-19 vaccination programs? A nationwide retrospective study. Lancet Reg Health Am. 2022; 7: 100167. DOI: 10.1016/j.lana.2021.100167.
Raeisi T., Mozaffari H., Sepehri N. et al. The negative impact of obesity on the occurrence and prognosis of the 2019 novel coronavirus (COVID-19) disease: a systematic review and meta-analysis. Eat Weight Disord. 2022; 27(3): 893–911. DOI: 10.1007/s40519-021-01269-3.
Russell C.D., Lone N.I., Baillie J.K. Comorbidities, multimorbidity and COVID-19. Nat Med. 2023; 29(2): 334–43. DOI: 10.1038/s41591-022-02156-9.
Uribe-Querol E., Rosales C. Neutrophils actively contribute to obesity-associated inflammation and pathological complications. Cells. 2022; 11(12): 1883. DOI: 10.3390/cells11121883.
McKenna E., Wubben R., Isaza-Correa J.M. et al. Neutrophils in COVID-19: not innocent bystanders. Front. Immunol. 2022; 13: 864387. DOI: 10.3389/fimmu.2022.864387.
Wang Chau C., Sugimura R. Locked in a pro-inflammatory state. eLife. 2022; 11: e80699. DOI: 10.7554/eLife.80699.
Grewal T., Buechler C. Adipokines as diagnostic and prognostic markers for the severity of COVID-19. Biomedicines. 2023; 11(5): 1302. DOI: 10.3390/biomedicines11051302.
Martinez-Colon G.J., Ratnasiri K., Chen H. et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci. Transl. Med. 2022; 14(674): eabm9151. DOI: 10.1126/scitranslmed.abm9151.
Nandy K., Salunke A., Pathak S.K. et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr. 2020; 14(5): 1017–25. DOI: 10.1016/j.dsx.2020.06.064.
Li B., Yang J., Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109(5): 531–8. DOI: 10.1007/s00392-020-01626-9.
Gupta R., Singh B., Gautam A. et al. SARS-COV-2 infection related mortality and comorbidities in a dedicated COVID-19 facility: a record based analysis from Uttar Pradesh. Asian J Med Sci. 2022; 13(3): 3–10. DOI: 10.3126/ajms.v13i3.41331.
Singh P., Bhaskar Y., Verma P. et al. Impact of comorbidity on patients with COVID-19 in India: A nationwide analysis. Front Public Health. 2023; 10: 1027312. DOI: 10.3389/fpubh.2022.1027312.
Kastora S., Patel M., Carter B. et al. Impact of diabetes on COVID-19 mortality and hospital outcomes from a global perspective: An umbrella systematic review and meta-analysis. Endocrinol Diabetes Metab. 2022; 5(3): e00338. DOI: 10.1002/edm2.338.
Manchanda V., Mitra S., Rafique I. et al. Is Omicron really mild? — Comparative analysis of comorbidities and disease outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants. Indian J Med Microbiol. 2023; 45: 100391. DOI: 10.1016/j.ijmmb.2023.100391.
Rawshani A., Kjölhede E.A., Rawshani A. et al. Severe COVID-19 in people with type 1 and type 2 diabetes in Sweden: A nationwide retrospective cohort study. Lancet Reg Health Eur. 2021; 4: 100105. DOI: 10.1016/j.lanepe.2021.100105.
Wong R., Hall M., Vaddavalli R. et al. Glycemic Control and Clinical Outcomes in U.S. Patients With COVID-19: Data From the National COVID Cohort Collaborative (N3C) Database. Diabetes Care. 2022; 45(5): 1099–1106. DOI: 10.2337/dc21-2186.
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021; 600(7889): 472–7. DOI: 10.1038/s41586-021-03767-x.
Llauradó G., Vlacho B., Wargny M. et al. The association between macrovascular complications and intensive care admission, invasive mechanical ventilation, and mortality in people with diabetes hospitalized for coronavirus disease-2019 (COVID-19). Cardiovasc Diabetol. 2022; 21(1): 216. DOI: 10.1186/s12933-022-01657-8.
Hadjadj S., Saulnier P.J., Ruan Y. et al. Associations of microvascular complications with all-cause death in patients with diabetes and COVID-19: The CORONADO, ABCD COVID-19 UK national audit and AMERICADO study groups. Diabetes Obes Metab. 2023; 25(1): 78–88. DOI: 10.1111/dom.14845.
Meister T., Kolde A., Fischer K. et al. A retrospective cohort study of incidence and risk factors for severe SARS-CoV-2 breakthrough infection among fully vaccinated people. Sci Rep. 2023; 13(1): 8531. DOI: 10.1038/s41598-023-35591-w.
Woodruff R.C., Garg S., George M.G. et al. Acute cardiac events during COVID-19-associated hospitalizations. J Am Coll Cardiol. 2023; 81(6): 557–69. DOI: 10.1016/j.jacc.2022.11.044.
Keller K., Sagoschen I., Konstantinides S. et al. Incidence and risk factors of myocarditis in hospitalized patients with COVID-19. J. Med. Virol. 2023; 95(3): e28646. DOI: 10.1002/jmv.28646.
Hobohm L., Sagoschen I., Barco S. et al. COVID-19 infection and its impact on case fatality in patients with pulmonary embolism. Eur. Respir. J. 2023; 61(1): 2200619. DOI: 10.1183/13993003.00619-2022.
Rubens M., Ramamoorthy V., Saxena A. et al. Hospital outcomes among COVID-19 hospitalizations with myocarditis from the California state inpatient database. Am. J. Cardiol. 2022; 183: 109–14. DOI: 10.1016/j.amjcard.2022.08.009.
Lundstrom K., Hromić-Jahjefendić A., Bilajac E. et al. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal. 2023; 101: 110495. DOI: 10.1016/j.cellsig.2022.110495.
Tedeschi D., Rizzi A., Biscaglia S., Tumscitz C. Acute myocardial infarction and large coronary thrombosis in a patient with COVID-19. Catheter Cardiovasc Interv. 2021; 97(2). DOI: 10.1002/ccd.29179.
Guan W.J., Liang W.H., Zhao Y. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020; 55(5). DOI: 10.1183/13993003.00547-2020.
Lippi G., Wong J., Henry B.M. Hypertension and its severity or mortality in coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020; 130: 304–9. DOI: 10.20452/pamw.15272.
Malik J.A., Ahmed S., Shinde M. et al. The impact of COVID-19 on comorbidities: a review of recent updates for combating it. Saudi J Biol Sci. 2022; 29(5): 3586–99. DOI: 10.1016/j.sjbs.2022.02.006.
John K.J., Mishra A.K., Ramasamy C. et al. Heart failure in COVID-19 patients: Critical care experience. World J Virol. 2022; 11(1): 1–19. DOI: 10.5501/wjv.v11.i1.1.
Makarova Y.A., Ryabkova V.A., Salukhov V.V. et al. Atherosclerosis, cardiovascular disorders and COVID-19: comorbid pathogenesis. Diagnostics (Basel). 2023; 13(3): 478. DOI: 10.3390/diagnostics13030478.
Kole C., Stefanou Ε., Karvelas N. et al. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther. 2023; 1–16. DOI: 10.1007/s10557-023-07465-w.
Yang Y., Wei Z., Xiong C., Qian H. Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update. Virol J. 2022; 19(1): 108. DOI: 10.1186/s12985-022-01833-y.
Mehta J., Nidhi J., Rawat J. Association of inflammatory markers in COVID-19 patients with and without comorbidity. Eur J Cardiovasc Med. 2023; 13(2): 1233–40. Website: https://www.healthcare-bulletin.co.uk/
Fachri M., Hatta M., Widowati E. et al. Correlations between comorbidities, chest x-ray findings, and C-Reactive protein level in patients with COVID-19. Ann Med Surg (Lond). 2022; 77: 103553. DOI: 10.1016/j.amsu.2022.103553.
Hashim Ibrahim Elbashir I., Kamal Ali Mohamed H., Adam Essa M.E., Seri A. Comparison between D-dimer levels in diabetic and non-diabetic positive COVID-19 adult patients: A hospital-based study. Endocrinol Diabetes Metab. 2022; 5(4): e349. DOI: 10.1002/edm2.349.
Thakkar C., Alikunju S., Niranjan N. et al. Klf9 plays a critical role in GR -dependent metabolic adaptations in cardiomyocytes. Cell Signal. 2023: 110886. DOI: 10.1016/j.cellsig.2023.110886.
Clark A., Jit M., Warren-Gash C. et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. Lancet Glob Health. 2020; 8(8): e1003–17. DOI: 10.1016/S2214-109X(20)30264-3.
Mutch C.P., Ross D.A., Bularga A. et al. Performance status: A key factor in predicting mortality in the first wave of COVID-19 in South-East Scotland. J R Coll Physicians Edinb. 2022; 52(3): 204–12. DOI: 10.1177/14782715221120137.
UK Office for National Statistics. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK. 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/7july2022
Agrawal U., Azcoaga-Lorenzo A., Fagbamigbe A.F. et al. Association between multimorbidity and mortality in a cohort of patients admitted to hospital with COVID-19 in Scotland. J R Soc Med. 2022; 115(1): 22–30. DOI: 10.1177/01410768211051715.
Chudasama Y.V., Zaccardi F., Gillies C.L. et al. Patterns of multimorbidity and risk of severe SARS-CoV-2 infection: an observational study in the U.K. BMC Infect Dis. 2021; 21(1): 908. DOI: 10.1186/s12879-021-06600-y.
Norris T., Razieh C., Zaccardi F. et al. Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19. Heart. 2022; 108(15): 1200–8. DOI: 10.1136/heartjnl-2021-320047.
Carmona-Pírez J., Gimeno-Miguel A., Bliek-Bueno K. et al. Identifying multimorbidity profiles associated with COVID-19 severity in chronic patients using network analysis in the PRECOVID Study. Sci Rep. 2022; 12(1): 2831. DOI: 10.1038/s41598-022-06838-9.
Hogarth M., John D., Li Y. et al. Clinical characteristics and comorbidities associated with SARS-CoV-2 breakthrough infection in the University of California Healthcare Systems. Am J Med Sci. 2023; 366(2): 102–13. DOI: 10.1016/j.amjms.2023.04.019.
Comoglu S., Kant A. Does the Charlson comorbidity index help predict the risk of death in COVID-19 patients? North Clin. Istanb. 2022; 9(2): 117–21. DOI: 10.14744/nci.2022.33349.
Szpulak A., Garlak U. Ćwirko H. et al. SARS-CoV-2 and its impact on the cardiovascular and digestive systems — The interplay between new virus variants and human cells. Comput Struct Biotechnol J. 2023; 21: 1022–9. DOI: 10.1016/j.csbj.2023.01.024.
Papageorgiou N., Sohrabi C., Prieto Merino D. et al. High sensitivity troponin and COVID-19 outcomes. Acta Cardiol. 2022; 77(1): 81–8. DOI: 10.1080/00015385.2021.1887586.
Siripanthong B., Asatryan B., Hanff T.C. et al. The pathogenesis and long-term consequences of COVID-19 cardiac injury. JACC Basic Transl Sci. 2022; 7(3): 294–308. DOI: 10.1016/j.jacbts.2021.10.011.
Bhatraju P.K., Ghassemieh B.J., Nichols M. et al. COVID-19 in critically ill patients in the Seattle region — case series. N Engl J Med. 2020; 382(21): 2012–22. DOI: 10.1056/NEJMoa2004500.
Alotaibi B.A., Aldali J.A., Aldali H.J. et al. The risk factors for acute cerebrovascular accident (stroke) in patients with severe acute respiratory syndrome coronavirus (SARS-CoV-2). Viruses. 2023; 15(5): 1140. DOI: 10.3390/v15051140.
Nannoni S., de Groot R., Bell S., Markus H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke. 2021; 16(2): 137–49. DOI: 10.1177/1747493020972922.
Artico J., Shiwani H., Moon J.C. et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: a prospective, multicenter, observational study. Circulation. 2023; 147(5): 364–74. DOI: 10.1161/CIRCULATIONAHA.122.060632.
Tessitore E., Carballo D., Poncet A. et al. Mortality and high risk of major adverse events in patients with COVID-19 and history of cardiovascular disease. Open Heart. 2021; 8(1): e001526. DOI: 10.1136/openhrt-2020-001526.
Barh D., Aljabali A.A., Tambuwala M.M. et al. Predicting COVID-19 — comorbidity pathway crosstalk-based targets and drugs: towards personalized COVID-19 management. Biomedicines. 2021; 9(5): 556. DOI: 10.3390/biomedicines9050556.
Linschoten M., Peters S., van Smeden M. et al. Cardiac complications in patients hospitalised with COVID-19. Eur Heart J Acute Cardiovasc Care. 2020; 9: 817–23. DOI: 10.1177/2048872620974605.
Tehrani D.M., Wang X., Rafique A.M. et al. Impact of cancer and cardiovascular disease on in-hospital outcomes of COVID-19 patients: results from the American heart association COVID-19 cardiovascular disease registry. Cardiooncology. 2021; 7(1): 28. DOI: 10.1186/s40959-021-00113-y.
Moey MYY., Hennessy C., French B. et al. COVID-19 severity and cardiovascular outcomes in SARS-CoV-2-infected patients with cancer and cardiovascular disease. Transl Oncol. 2023; 34: 101709. DOI: 10.1016/j.tranon.2023.101709.
Ramzi Z.S. Hospital readmissions and post-discharge all-cause mortality in COVID-19 recovered patients; a systematic review and meta-analysis. Am J Emerg Med. 2022; 51: 267–79. DOI: 10.1016/j.ajem.2021.10.059.
Zahid S., Khan M.Z., Shatla I. et al. Thirty-day cardiovascular readmissions following discharge with COVID-19: A US Nationwide Readmission Database analysis from the pandemic year 2020. CJC Open. 2023; 5(7): 554–66. DOI: 10.1016/j.cjco.2023.04.007.