SEPSIS IMMUNOLOGY
Abstract
Sepsis is a severe systemic infection with organ dysfunction that requires urgent action. With insufficiently prompt and effective intervention, mortality exceeds 30 %. The heterogeneity of sepsis is the reason for the failure of clinical trials of immunomodulatory therapy in patients with sepsis. Due to insufficient understanding of the pathogenetic causes of this heterogeneity, treatments that seemed promising in the preclinical setting have not been successful in clinical trials. The lack of effectiveness is somewhat due to the application of a one-size-fits-all approach to patients with sepsis. Diagnostic and therapeutic strategies that take into account the individual characteristics of the patient are not widely used in the field of sepsis. A shift to more personalized care is needed in all three areas of sepsis management: antibiotic therapy, resuscitation, and organ support. Therefore, attempts are being made to stratify patients into more homogeneous groups based on common prognostic and predictive characteristics of the immune response for the group. This approach is the key to precision medicine, with selection on the basis of pathophysiological mechanism of those patients who are more likely to respond to specific therapy. The problem lies in the relatively limited understanding of the mechanisms governing the immunopathology of sepsis. After decades of research, sepsis remains ill-defined, and no single definition of sepsis captures the complexity of the syndrome. An in-depth analysis of phenotypic differences reveals subgroups of patients who are actually helped by certain interventions. Transcriptome analysis of whole blood, plasma, and individual populations of immune cells identified gene expression signatures that not only distinguish sepsis from non-infectious systemic inflammatory response syndrome, but also distinguish sepsis endotypes with different immune profiles and different responses to therapy, which are determined by the pathobiological mechanism. Thus, there is growing interest in a more individual approach to the management of sepsis, but the best means of implementing it have not yet been identified, so information continues to accumulate.
References
Abrams S.T., Morton B., Alhamdi Y. et al. A novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. Am. J. Respir. Crit. Care Med. 2019; 200(7): 869–80. DOI: 10.1164/rccm.201811-2111OC.
Adelman M.W., Woodworth M.H., Langelier C. et al. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit Care. 2020; 24(1): 278. DOI: 10.1186/s13054-020-02989-1.
Aldewereld Z.T., Zhang L.A., Urbano A. et al. Identification of clinical phenotypes in septic patients presenting with hypotension or elevated lactate. Front Med (Lausanne). 2022; 9: 794423. DOI: 10.3389/fmed.2022.794423.
Antcliffe D.B., Burnham K.L., Al-Beidh F. et al. Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH Randomized Trial. Am J Respir Crit Care Med. 2019; 199(8): 980–6. DOI: 10.1164/rccm.201807-1419OC.
Antonakos N., Gilbert C., Théroude C. et al. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol. 2022; 13: 951798. DOI: 10.3389/fimmu.2022.951798
Baghela A., Pena O.M., Lee A.H. et al. Predicting sepsis severity at first clinical presentation: the role of endotypes and mechanistic signatures. EBioMedicine. 2022; 75: 103776. DOI: 10.1016/j.ebiom.2021.103776.
Bhavani S.V., Carey K.A., Gilbert E.R. et al. Identifying novel sepsis subphenotypes using temperature trajectories. Am. J. Respir. Crit. Care Med. 2019; 200(3): 327–35. DOI: 10.1164/rccm.201806-1197OC.
Bodinier M., Peronnet E., Brengel-Pesce K. et al. Monocyte trajectories endotypes are associated with worsening in septic patients. Front Immunol. 2021; 12: 795052. DOI: 10.3389/fimmu.2021.795052.
Brakenridge S.C., Efron P.A., Cox M.C. et al. Current epidemiology of surgical sepsis: discordance between inpatient mortality and 1-year outcomes. Ann Surg. 2019; 270(3): 502–10. DOI: 10.1097/SLA.0000000000003458
Brakenridge S.C., Starostik P., Ghita G. et al. A transcriptomic severity metric that predicts clinical outcomes in critically ill surgical sepsis patients. Crit Care Explor. 2021; 3(10): e0554. DOI: 10.1097/CCE.0000000000000554.
Caserta S., Kern F., Cohen J. et al. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Sci Rep. 2016; 6: 28006. DOI: 10.1038/srep28006.
Cummings M.J., Jacob S.T. Equitable endotyping is essential to achieve a global standard of precise, effective, and locally-relevant sepsis care. EBioMedicine. 2022; 86: 104348. DOI: 10.1016/j.ebiom.2022.104348.
Darden D.B., Ghita G.L., Wang Z. et al. Chronic critical illness elicits a unique circulating leukocyte transcriptome in sepsis survivors. J Clin Med. 2021; 10(15): 3211. DOI: 10.3390/jcm10153211.
Darden D.B., Kelly L.S., Fenner B.P. et al. Dysregulated immunity and immunotherapy after sepsis. J Clin Med. 2021; 10(8): 1742. DOI: 10.3390/jcm10081742.
Davenport E.E., Burnham K.L., Radhakrishnan J. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016; 4(4): 259–71. 10.1016/S2213-2600(16)00046-1.
Davis F.M., Schaller M.A., Dendekker A. et al. Sepsis induces prolonged epigenetic modifications in bone marrow and peripheral macrophages impairing inflammation and wound healing. Arterioscler. Thromb. Vasc. Biol. 2019; 39(11): 2353–66. DOI: 10.1161/ATVBAHA.119.312754.
DeMerle K.M., Angus D.C., Baillie J.K. et al. Sepsis subclasses: a framework for development and interpretation. Crit Care Med. 2021; 49(5): 748–59. DOI: 10.1097/CCM.0000000000004842.
Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11): 1181–247. DOI: 10.1007/s00134-021-06506-y.
Formosa A., Turgeon P., Dos Santos C.C. et al. Role of miRNA dysregulation in sepsis. Mol Med. 2022; 28(1): 99. DOI: 10.1186/s10020-022-00527-z.
Haak B.W., Argelaguet R., Kinsella C.M. et al. Integrative transkingdom analysis of the gut microbiome in antibiotic perturbation and critical illness. mSystems. 2021; 6(2): e01148–20. DOI: 10.1128/mSystems.01148-20.
Hawez A., Taha D., Algaber A. et al. MiR-155 regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis. J Leukoc Biol. 2022; 111(2): 391–400. DOI: 10.1002/JLB.3A1220-789RR.
Herminghausa A., Osuchowskib M.F. How sepsis parallels and differs from COVID-19. eBioMedicine. 2022; 86: 104355. DOI: 10.1016/j.ebiom.2022.104355.
Hollen M.K., Stortz J.A., Darden D. et al. Myeloid-derived suppressor cell function and epigenetic expression evolves over time after surgical sepsis. Crit Care. 2019; 23(1): 355. DOI: 10.1186/s13054-019-2628-x.
Hoogendijk A.J., van Vught L.A., Wiewel M.A., et al. Kinase activity is impaired in neutrophils of sepsis patients. Haematologica. 2019; 104(6): e233–5. DOI: 10.3324/haematol.2018.201913.
Hotchkiss R.S., Colston E., Yende S. et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell Death-Ligand 1 antibody (BMS-936559). Crit. Care Med. 2019; 47(5): 632–42. DOI: 10.1097/CCM.0000000000003685.
Hotchkiss R.S., Colston E., Yende S. et al. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 2019; 45(10): 1360–71. DOI: 10.1007/s00134-019-05704-z.
Karakike E., Giamarellos-Bourboulis E.J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front. Immunol. 2019; 321(20): 1993–2002. DOI: 10.1001/jama.2019.5358.
Kerris EWJ., Hoptay C., Calderon T., Freishtat R.J. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J. Investig. Med. 2020; 68(4): 813–20. DOI: 10.1136/jim-2019-001195.
Kim S.M., DeFazio J.R., Hyoju S.K. et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat Commun. 2020; 11(1): 2354. DOI: 10.1038/s41467-020-15545-w.
Komorowski M., Green A., Tatham K.C. et al. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine. 2022; 86: 104394. DOI: 10.1016/j.ebiom.2022.104394.
König R., Kolte A., Ahlers O. et al. Use of IFNγ/IL10 ratio for stratification of hydrocortisone therapy in patients with septic shock. Front Immunol. 2021; 12: 607217. DOI: 10.3389/fimmu.2021.607217.
Kreitmann L., Bodinier M., Fleurie A. et al. Mortality prediction in sepsis with an immune-related transcriptomics signature: a multi-cohort analysis. Front Med (Lausanne). 2022; 9: 930043. DOI: 10.3389/fmed.2022.930043.
Leijte G.P., Rimmelé T., Kox M. et al. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit. Care. 2020; 24(1): 110. DOI: 10.1186/s13054-020-2830-x.
Liu R., Greenstein J.L., Fackler J.C. et al. Spectral clustering of risk score trajectories stratifies sepsis patients by clinical outcome and interventions received. Elife. 2020; 9: e58142. DOI: 10.7554/eLife.58142.
Mewes C., Alexander T., Benedikt Büttner et al. Effect of the Lymphocyte Activation Gene 3 polymorphism rs951818 on mortality and disease progression in patients with sepsis — a prospective genetic association study. J Clin Med. 2021; 10(22): 5302. DOI: 10.3390/jcm10225302.
Mewes C., Alexander T., Büttner B. et al. TIM-3 genetic variants are associated with altered clinical outcome and susceptibility to gram-positive infections in patients with sepsis. Int J Mol Sci. 2020; 21(21): 8318. DOI: 10.3390/ijms21218318.
Mewes C., Büttner B., Hinz Jo. et al. The CTLA-4 rs231775 GG genotype is associated with favorable 90-day survival in Caucasian patients with sepsis. Sci Rep. 2018; 8(1): 15140. DOI: 10.1038/s41598-018-33246-9
Miao H., Chen S., Ding R. Evaluation of the molecular mechanisms of sepsis using proteomics. Front Immunol. 2021; 12: 733537. DOI: 10.3389/fimmu.2021.733537.
Reddy K., Sinha .P, O’Kane C.M. et al. Subphenotypes in critical care: translation into clinical practice. Lancet Respir. Med. 2020; 8(6): 631–43. DOI: 10.1016/S2213-2600(20)30124-7.
Ren C., Yao R.Q., Zhang H. et al. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation. 2020; 17(1): 14. DOI: 10.1186/s12974-020-1701-3.
Reyes M., Filbin M.R., Bhattacharyya R.P. et al. An immune-cell signature of bacterial sepsis. Nat Med. 2020; 26(3): 333–40. DOI: 10.1038/s41591-020-0752-4.
Reyes M., Filbin M.R., Bhattacharyya R.P. et al. Plasma from patients with bacterial sepsis or severe COVID-19 induces suppressive myeloid cell production from hematopoietic progenitors in vitro. Sci Transl Med. 2021; 13(598): eabe9599. DOI: 10.1126/scitranslmed.abe9599.
Roquilly A., Jacqueline C., Davieau M. et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 2020; 21(6): 636–48. DOI: 10.1038/s41590-020-0673-x.
Seymour C.W., Kennedy J.N., Wang S. et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019; 321(20): 2003–17. DOI: 10.1001/jama.2019.5791.
Shankar-Hari M., Phillips G.S., Levy M.L. et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 775–87. DOI: 10.1001/jama.2016.0289.
Singer M., Deutschman C.S., Seymour C.W. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8): 801–10. DOI: 10.1001/jama.2016.0287.
Stanski N.L., Wong H.R. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 2020; 16(1): 20–31. DOI: 10.1038/s41581-019-0199-3.
Sweeney T.E., Azad T.D., Donato M. et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med. 2018; 46(6): 915–25. DOI: 10.1097/CCM.0000000000003084.
Sweeney T.E., Perumal T.M., Henao Ricardo et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun. 2018; 9(1): 694. DOI: 10.1038/s41467-018-03078-2.
Torres L.K., Pickkers P., van der Poll T. Sepsis-induced immunosuppression. Annu Rev Physiol. 2022; 84: 157–81. DOI: 10.1146/annurev-physiol-061121-040214.
Van der Poll T., Shankar-Hari M., Wiersinga W.J. The immunology of sepsis. Immunity. Immunity. 2021; 54(11): 2450–64. DOI: 10.1016/j.immuni.2021.10.012.
Venet F., Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018; 14(2): 121–37. DOI: 10.1038/nrneph.2017.165.
Vincent J.L. Current sepsis therapeutics. EBioMedicine. 2022; 86: 104318. DOI: 10.1016/j.ebiom.2022.104318.
Vincent J.L. Emerging paradigms in sepsis. EBioMedicine. 2022; 86: 04398. DOI: 10.1016/j.ebiom.2022.104398.
Wakeley M.E., Gray C.C., Monaghan S.F.et al. Check point inhibitors and their role in immunosuppression in sepsis. Crit. Care Clin. 2020; 36(1): 69–88. DOI: 10.1016/j.ccc.2019.08.006.
Wang Z.F., Yang Y.M., Fan H. Diagnostic value of MiR-155 for acute lung injury/acute respiratory distress syndrome in patients with sepsis. J Int Med Res. 2020; 48(7): 300060520943070. DOI: 10.1177/0300060520943070.
Watanabe E., Nishida O., Kakihana Y. et al. Pharmacokinetics, pharmacodynamics, and safety of nivolumab in patients with sepsis-induced immunosuppression: a multicenter, open-label phase 1/2 study. Shock. 2020; 53(6): 686–94. DOI: 10.1097/SHK.0000000000001443.
Wiersinga W.J., van der Poll T. Immunopathophysiology of human sepsis. EBioMedicine. 2022; 86: 104363. DOI: 10.1016/j.ebiom.2022.104363.
Wisler J.R., Singh K., Mccarty A.R. et al. Proteomic pathway analysis of monocyte-derived exosomes during surgical sepsis identifies immunoregulatory functions. Surg Infect (Larchmt). 2020; 21(2): 101–11. DOI: 10.1089/sur.2019.051.
Wong H.R., Hart K.W., Lindsell C.J., Sweeney T.E. External corroboration that corticosteroids may be harmful to septic shock endotype A patients. Crit. Care Med. 2021; 49(1): e98–e101. DOI: 10.1097/CCM.0000000000004709.
Xia D., Wang S., Yao R. et al. Pyroptosis in sepsis: comprehensive analysis of research hotspots and core genes in 2022. Front Mol Biosci. 2022; 9: 955991. DOI: 10.3389/fmolb.2022.955991.