THE ROLE OF GROWTH FACTORS IN THE DEVELOPMENT OF VARIOUS DISEASES
Abstract
Currently, conditions and factors that provoke and aggravate the course of pathological processes are being actively studied, their role in the pathogenesis of diseases and the impact on cellular and humoral immunity are analyzed. Work aimed at identifying clinical, diagnostic and prognostic values of growth factors to improve the effectiveness of medical care for patients of this profile and reduce the severity of diseases, show the need and relevance of their implementation. For normal tissue functioning, regular oxygen delivery to it by blood vessels is necessary to avoid hypoxic manifestations, but most of the research efforts in the last decade have been focused on understanding how blood vessels are formed. Providing tissues and organs with oxygen by blood vessels determines their reactivity in pathological conditions. Thus, the adequacy of angiogenesis plays a key physiological role in maintaining tissue homeostasis, especially in the skin, where reparative and biological processes are closely related to the processes of formation and development of new microvessels. Despite the fact that by now a large number of molecular-genetic, immunological studies have been accumulated on the role of the family of vasoendothelial (VEGF) and epidermal (EGF) growth factors in the development of various pathological processes, many aspects of the influence of these factors and the interaction with each other require further study, which will allow for a precise impact on any complex pathological process. The article discusses issues related to the role of vasoendothelial and epidermal growth factors in the development of various diseases, the pathogenesis of which is associated with pathological angiogenesis.
References
Bergkvist M., Henricson J., Iredahl F. Assessment of microcirculation of the skin using Tissue Viability Imaging: a promising technique for detecting venous stasis in the skin. Microvascular Research. 2015;101:20–5. DOI: 10.1016/j.mvr.2015.06.002.
Башкина О.А., Иманвердиева Н.А. Алгоритм прогнозирования развития атопического марша у детей с атопическим дерматитом, инфицированных вирусом простого герпеса. Азербайджанский медицинский журнал. 2024;2:58–63. DOI: 10.34921/amj.2024.16.16.001.
Степанова Т.В., Иванов А.Н., Попыхова Э.Б., Лагутина Д.Д. Молекулярные маркеры эндотелиальной дисфункции. Современные проблемы науки и образования. 2019;64(1):34–41. DOI: 10.18821/0869-2084-2018-63-34-41.
Guise E., Chade A.R. VEGF therapy for the kidney: emerging strategies. Am J Physiol Renal Physiol. 2018;315(4):F747–51. DOI: 10.1152/ajprenal. 00617.2017.
Berlanga-Acosta J., Camacho-Rodriguez H., Mendoza-Mari Y., Falcon-Cama V., Garcia-Ojalvo A., Herrera-Martínez L., Guillen-Nieto G. Epidermal growth factor in healing diabetic foot ulcers: from gene expression to tissue healing and systemic biomarker circulation. MEDICCRev. 2020;22(3):24–31. DOI: 10.37757/mr2020.v22.n3.7.
Hussain R.M., Shaukat B.A., Ciulla L.M., Berrocal A.M., Sridhar J. Vascular Endothelial Growth Factor Antagonists: Promising Players in the Treatment of Neovascular Age-Related Macular Degeneration. Drug Des Devel Ther. 2021;15:2653–65. DOI: 10.2147/DDDT.S295223.
Melincovici C.S., Bosca A.B., Susman S., Marginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L., Mihu C.M. Vascular endothelial growth factor (VEGF) — key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455–67.
Pan Z.G., Mao Y., Sun F.Y. VEGF enhances reconstruction of neurovascular units in the brain after injury. Sheng Li Xue Bao. 2017;69(1):96–108.
Thomas J., Baker K., Han J. Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells. Cellular and Molecular Life Sciences. 2013;70(10):1779–92. DOI: 10.1007/s00018-013-1312-6.
Wiszniak S., Schwarz Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules. 2021;11(1):128. DOI: 10.3390/biom11010128.
Клименко Л.Л., Деев А.И., Баскаков И.С., Буданова М.Н., Мазилина А.Н., Савостина М.С., Кузнецова А.В. Макро-и микроэлементы в сыворотке крови пациентов с ишемическим инсультом при различном уровне нейроспецифического белка VEGF. Микроэлементы в медицине. 2018;19(4):59–62. DOI: 10.19112/2413-6174-2018-19-4-59-62.
Лебеденко А.А., Семерник О.Е., Кислов Е.О., Катышева Ю.И., Боцман Е.А. Значение фактора роста эндотелия сосудов в патогенезе атопического дерматита у детей. Вестник Волгоградского государственного медицинского университета. 2018;3(67):121–3. DOI: 10.19163/1994-9480-2017-3(63)-64-66.
Потапова Н.Л., Гаймоленко И.Н., Терешков П.П. Значение эндотелиального фактора роста в контроле бронхиальной астмы у детей. Доктор.Ру. 2020;19(3):40–3. DOI: 10.31550/1727-2378-2020-19-3-40-43.
Иманвердиева Н.А., Башкина О.А., Ерина И.А. Сопутствующая патология у больных атопическим дерматитом в детском возрасте. Вестник новых медицинских технологий. 2021;28(3):5–9. DOI: 10.24412/1609-2163-2021-3-5-9.
Шевченко А.В., Коненков В.И., Прокофьев В.Ф., Королев М.А., Омельченко В.О. Комбинации полиморфизмов гена фактора роста сосудистого эндотелия и генов его рецепторов (VEGF/VEGFR) в оценке сердечно-сосудистого риска у пациентов с ревматоидным артритом. Иммунология. 2020;41(3):206214. DOI: 10.33029/0206-4952-2020-41-3-206-214.
Королева Е.С., Алифирова В.М. Механизмы нейрогенеза и ангиогенеза при ишемическом инсульте: обзор литературы. Анналы клинической и экспериментальной неврологии. 2021;15(3):62–71. DOI: 10.54101/ACEN.2021.3.7.
Basilio-de-Oliveira R., Nunes Pannain V. Prognostic angiogenic markers (endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors. W J Gastroenterol. 2015;21(22):6924–30. DOI: 10.3748/wjg.v21.i22.6924.
Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248–1264. DOI: 10.1016/j.cell.2019.01.021.
Mills S., Zhuang L., Arandjelovic P. Effects of human pericytes in a murine excision model of wound healing. Exp Dermatol. 2015;24(11):881–2. DOI: 10.1111/exd.12755.
Артемова Е.В., Горбачева А.М., Галстян Г.Р., Токмакова А.Ю., Гаврилова С.А., Дедов И.И. Механизмы нейрогуморальной регуляции клеточного цикла кератиноцитов при сахарном диабете. Сахарный диабет. 2016;19(5):366–74. DOI: 10.14341/dm8131.
Воскресенская О.Н., Захарова Н.Б., Тарасова Ю.С., Терешкина Н.Е. Биомаркеры эндотелиальной дисфункции при хронической ишемии головного мозга. Медицинский альманах. 2018;5:56. Доступен по: https://cyberleninka.ru/article/n/biomarkery-endotelialnoy-disfunktsii-pri-hronicheskoy-ishemii-golovnogo-mozga (дата обращения: 11.01.2025).
Hohman T.J., Bell S.P., Jefferson A.L. Alzheimer’s Disease Neuroimaging Initiative. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease. JAMA Neurol. 2015;72(5):520–9. DOI: 10.1001/jamaneurol.2014.4761.
Голубев А.М., Гречко А.В., Захарченко В.Е., Канарский М.М., Петрова М.В., Борисов И.В. Сравнительная характеристика содержания кандидатных молекулярных маркеров при ишемическом и геморрагическом инсульте. Общая реаниматология. 2021;17(5):23–34. DOI: 10.15360/1813-9779-2021-5-23-34.
Гулиева М.Ш., Багманян С.Д., Чуканова А.С., Чуканова Е.И. Роль биомаркеров крови в прогнозировании исхода течения ишемического инсульта. Consilium Medicum. 2020;22(9):28–32. DOI: 10.26442/20751753.2020.9.200284.
Lim N.S., Swanson C.R., Cherng H.R., Unger T.L., Xie S.X., Weintraub D., Marek K., Stern M.B., Siderowf A., Trojanowski J.Q., Chen-Plotkin A.S. Plasma EGF and cognitive decline in Parkinson's disease and Alzheimer's disease. 2016;3(5):346–55. DOI: 10.1002/acn3.299.
Jaffe G.J., Ying G.S., Toth C.A., Daniel E., Grunwald J.E., Martin D.F. Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Macular morphology and visual acuity in year five of the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2019;126(2):252–60. DOI: 10.1016/j.ophtha.2018.08.035.
Qian J.J., Xu Q., Xu W.M., Cai R., Huang G.C. Expression of VEGF-A signaling pathway in cartilage of ACLT-induced osteoarthritis mouse model. J Orthop Surg Res. 2021;16(1):379. DOI: 10.1186/s13018-021-02528-w.
Ledeganck K.J., den Brinker M., Peeters E., Verschueren A., De Winter B.Y, France A., Dotremont H., Trouet D. The next generation: Urinary epidermal growth factor is associated with an early decline in kidney function in children and adolescents with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2021;178:108945. DOI: 10.1016/j.diabres.2021.108945.
Norvik J.V., Harskamp L.R., Nair V., Shedden K., Solbu M.D., Eriksen B.O., Kretzler M., Gansevoort R.T., Ju W, Melsom T. Urinary excretion of epidermal growth factor and rapid loss of kidney function. Nephrol Dial Transplant. 2021;36(10):1882–92. DOI: 10.1093/ndt/gfaa208.
Pandey A.K., Singhi E.K., Arroyo J.P., Ikizler T.A., Gould E.R., Brown J., Beckman J.A., Harrison D.G., Moslehi J. Mechanisms of VEGF (Vascular Endothelial Growth Factor) Inhibitor-Associated Hypertension and Vascular Disease. Hypertension. 2018;71(2):e1-e8. DOI: 10.1161/hypertensionaha.117.10271.
Zhang D., LvF. L., Wang, G.H. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur Rev Med Pharmacol Sci. 2018;22(16):5071–6. DOI: 10.26355/eurrev_201808_15699.
Hulse R.P. Role of VEGF-A in chronic pain. Oncotarget. 2017;8(7):10775–6. DOI: 10.18632/oncotarget.14615.
Liu X., Wang P., Zhang C., Ma Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget. 2017;8(30):50209–20. DOI: 10.18632/oncotarget.16854.
Albiges L., McGregor B.A., Heng DYC., Procopio G., de Velasco G., Taguieva-Pioger N., Martín-Couce L., Tannir N.M., Powles T. Vascular endothelial growth factor-targeted therapy in patients with renal cell carcinoma pretreated with immune checkpoint inhibitors: A systematic literature review. Cancer Treat Rev. 2024;122:102652. DOI: 10.1016/j.ctrv.2023.102652.
Frazier W., Bhardwaj N. Atopic Dermatitis: Diagnosis and Treatment. Am Fam Physician. 2020;101(10):590–8.
Helker C., Schuermann A., Pollmann C. The hormonal peptide elabela guides angioblasts to the midline during vasculogenesis. еLife. 2015;4:е06726. DOI: 10.7554/eLife.06726.
Kim B.W., Kim S.K., Heo K.W., Bae K.B., Jeong K.H., Lee S.H., Kim T.H., Kim Y.H., Kang S.W. Association between epidermal growth factor (EGF) and EGF receptor gene polymorphisms and end-stage renal disease and acute renal allograft rejection in a Korean population. Ren Fail. 2020;42(1):98–106. DOI: 10.1080/0886022X.2019.1710535.
Laddha A.P., Kulkarni Y.A. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med. 2019;156:33–46. DOI: 10.1016/j.rmed.2019.08.003.
Kemp M.G., Spandau D.F., Travers J.B. Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin. Molecules. 2017;22(3):356. DOI: 10.3390/molecules22030356.
Ogunmokun G., Dewanjee S., Chakraborty P., Valupadas C., Chaudhary A., Kolli V., Anand U., Vallamkondu J., Goel P., Paluru H.P.R., Gill K.D., Reddy P.H., De Feo V., Kandimalla R. The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer’s Disease. Cells. 2021;10(10):2790. DOI: 10.3390/cells10102790.
Meybosch S., De Monie A., Anne C., Bruyndonckx L., Jurgens A., De Winter B.Y., Trouet D., Ledeganck K.J. Epidermal growth factor and its influencing variables in healthy children and adults. 2019;14(1):е0211212. DOI: 10.1371/journal.pone.0211212.
Hu Q., Qin Q., Xu S., Zhou L., Xia C., Shi X, Zhang H., Jia J., Ye C., Yin Z., Hu G. Pituitary effects of EGF on gonadotropin, growth hormone, prolactin and somatolactin in grass carp. Biology. 2020;9(9):279. DOI: 10.3390/biology9090279.
Wu M., Ruan J., Zhong B. Progress in human epidermal growth factor research. Chinese Journal of Biotechnology. 2020;36(12):2813–2823. DOI: 10.13345/j.cjb.200209.
Иманвердиева Н.А., Башкина О.А. Диагностическое значение содержания вазоэндотелиального фактора роста в зависимости от степени тяжести и длительности атопического дерматита, а также с учетом наличия маркеров герпесвирусной инфекции. Архивъ внутренней медицины. 2024;14(3):197–205. DOI: 10.20514/2226-6704-2024-14-3-197-205.