SARS CoV-2 PROTEINS AND HUMAN PROTEINS

  • A.T. Maryanovich North-Western Medical University named after I.I. Mechnikov. Kirochnaya 41, Saint Petersburg, Russian Federation, 191015 https://orcid.org/0000-0001-7482-3403
  • D.Yu. Kormilets Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044
Keywords: COVID-19, SARS CoV-2, protein homology, receptor-binding domain, interleukin-7, ACE2 receptor, congenital innunity, autoimmunity, sense of smell, sense of taste

Abstract

SARS CoV-2 proteins are molecules with a mass of several tens to several thousand amino acid residues. There are structural and nonstructural proteins. The former include Spike glycoprotein (S), small membrane envelope protein (E), membrane protein (M), and nucleoprotein or nucleocapsid (N). The second group consists of 16 nonstructural proteins (Nsp1-16, including replicase  polyproteins RPP 1a and 1ab) and 10 accessory factors or open reading frame proteins (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 and 14). Proteins S, E and M, located outside and in the membrane of a virion, are involved in the contact of the virion with a cell and penetration into it. Other proteins are involved in the hijacking of intracellular mechanisms and their use in the virus’s own interests. Most of these proteins contain numerous motifs that are homologous to human proteins including such important ones as Interleukin-7. Perhaps this homology is an important factor in deceiving the immune system at the initial stages of infection and provoking an autoimmune response later. The homology of SARS CoV-2 proteins on the one hand and taste and olfactory receptor proteins on the other hand may possibly explain the causes of the impaired perception of taste and olfactory stimuli characteristic of COVID infection.

References

Beaudoin C.A., Jamasb A.R., Alsulami A.F. et al. Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J. 2021; 19: 3938–53. DOI: 10.1016/j.csbj.2021.06.041. PMID: 34234921; PMCID: PMC8249111.

Maryanovich A.T., Kormilets D.Y., Polyanovsky A.D. Xenin, the ol­dest after insulin? Mol Biol Rep. 2018; 45: 143–50. DOI: 10.1007/s11033-018-4147-2. PMID: 29340900.

Khavinson V., Terekhov A., Kormilets D., Maryanovich A. Homo­logy between SARS CoV-2 and human proteins. Sci Rep. 2021; 11: 17199. DOI: 10.1038/s41598-021-96233-7. PMID: 34433832;

PMCID: PMC8387358.

Kwarteng A., Asiedu E., Sylverken A.A. et al. Molecular characterization of interactions between the D614G variant of SARS-CoV-2 S-protein and neutralizing antibodies, A computational approach. Infect Genet Evol. 2021; 91: 104815. DOI: 10.1016/j.meegid.2021.104815. PMID: 33774178; PMCID: PMC7987576.

Uniprot database/ https://www.uniprot.org/uniprot/?query=­proteome, UP000464024+AND+proteomecomponent, %22Genome%22&sort=score. Uniprot database – Homo sapiens. https://www.uniprot.org/proteomes/UP000005640 Homo sapiens, last change, 03 Sept 2020.

Yi C., Sun X., Ye J. et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutra­lizing antibodies. Cell Mol Immunol. 2020; 17: 621–30. DOI: 10.1038/s41423-020-0458-z. PMID: 32415260; PMCID: PMC7227451.

Jaimes J.A., André N.M., Chappie J.S. et al. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J Mol Biol. 2020; 432: 3309–25. DOI: 10.1016/j.jmb.2020.04.009. PMID: 32320687; PMCID: PMC7166309.

Li S., Zhang Y., Guan Z. et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther. 2020; 5: 235. DOI: 10.1038/s41392-020-00334-0. PMID: 33037188; PMCID: PMC7545816.

Adamo S., Chevrier S., Cervia C. et al. Profound dysregulation of T cell homeostasis and function in patients with severe COVID-19. Allergy. 2021; 76: 2866–81. DOI: 10.1111/all.14866. PMID: 33884644; PMCID: PMC8251365.

Wang G.L., Gao H.X., Wang Y.L. et al. Serum IP-10 and IL-7 levels are associated with disease severity of coronavirus disease 2019. Cytokine. 2021; 142: 155500. DOI: 10.1016/j.cyto.2021.155500. PMID: 33810947; PMCID: PMC7973056.

Laterre P.F., François B., Collienne C. et al. Association of Interleukin 7 Immunotherapy With Lymphocyte Counts Among Patients With Severe Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 2020; 3: e2016485. DOI: 10.1001/jamanetworkopen.2020.16485. PMID: 32697322; PMCID: PMC7376391.

Bekele Y., Sui Y., Berzofsky J.A. IL-7 in SARS-CoV-2 Infection and as a Potential Vaccine Adjuvant. Front Immunol. 2021; 12: 737406. DOI: 10.3389/fimmu.2021.737406. PMID: 34603318; PMCID: PMC8484798.

Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19: 102567. DOI: 10.1016/j.autrev.2020.102567. PMID: 32376392; PMCID: PMC7196557.

Ma S., Sun S., Li J. et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res. 2021; 31: 415–32. DOI: 10.1038/s41422-020-00412-6. PMID: 32913304; PMCID: PMC7483052.

Vicenzi M., Di Cosola R., Ruscica M. et al. The liaison bet­ween respiratory failure and high blood pressure, evidence from COVID-19 patients. Eur Respir J. 2020; 56: 2001157. DOI: 10.1183/13993003.01157-2020. PMID: 32430432; PMCID: PMC7241109.

Wei S., Li C., Yin Z. et al. Histone methylation in DNA repair and clinical practice, new findings during the past 5-years. J Cancer. 2018; 9: 2072–81. DOI: 10.7150/jca.23427. PMC: 6010677. PMID: 29937925.

Tiwari R., Mishra A.R., Gupta A., Nayak D. Structural similarity-based prediction of host factors associated with SARS-CoV-2 infection and pathogenesis. J Biomol Struct Dyn. 2021: 1–12. https://doi.org/10.1080/07391102.2021.1874532.

Rocheleau L., Laroche G., Fu K., et al. Identification of a High-Frequency Intrahost SARS-CoV-2 Spike Variant with Enhanced Cytopathic and Fusogenic Effects. MBio. 2021; 12: e0078821. DOI: 10.1128/mBio.00788-21. Epub 2021 Jun 29. PMID: 34182784;

PMCID: PMC8262852.

Hutchison J.M., Capone R., Luu D.D. et al. Recombinant SARS-CoV-2 envelope protein traffics to the trans-Golgi network following amphipol-mediated delivery into human cells. J Biol Chem. 2021; 297: 100940. https://doi.org/10.1016/j.jbc.2021.100940.

Boson B., Legros V., Zhou B. et al. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chemi. 2021; 296: 100111. https://doi.org/10.1074/jbc.RA120.016175.

Hackstadt T., Chiramel A.I., Hoyt F.H. et al. Disruption of the Golgi Apparatus and Contribution of the Endoplasmic Reticulum to the SARS-CoV-2 Replication Complex. Viruses. 2021; 13: 1798. DOI: 10.3390/v13091798. PMID: 34578379; PMCID: PMC8473243.

Hatakeyama D., Masuda T., Miki R. et al. In-vitro acetylation of SARS-CoV and SARS-CoV-2 nucleocapsid proteins by human PCAF and GCN5. Biochem Biophys Res Commun. 2021; 557: 273–9. DOI: 10.1016/j.bbrc.2021.03.173. PMID: 33894414; PMCID: PMC8030717

MROH2B — Function. https://www.nextprot.org/entry/NX_Q7Z745.

Sansone A., Mollaioli D., Ciocca G. et al. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J Endocrinol Invest. 2021; 44: 223–31. DOI: 10.1007/s40618-020-01350-1.

Mihaescu G., Chifiriuc M.C., Iliescu C. et al. SARS-CoV-2, From Structure to Pathology, Host Immune Response and Therapeutic Management. Microorganisms. 2020; 8: 1468. DOI: 10.3390/microorganisms8101468. PMID: 32987852; PMCID: PMC7600570.

Haig D.M. Subversion and piracy, DNA viruses and immune evasion. Res Vet Sci. 2001; 70: 205–19. DOI: 10.1053/rvsc.2001.0462. PMID 11676616.

Tiwari M., Mishra D. Investigating the genomic landscape of no­vel coronavirus (2019-nCoV) to identify non-synonymous mutations for use in diagnosis and drug design. J Clin Virol. 2020; 128: 104441. DOI: 10.1016/j.jcv.2020.104441. PMID: 32425659; PMCID: PMC7227581.

Chen M., Shen W., Rowan N.R. et al. Elevated ACE-2 expression in the olfactory neuroepithelium, implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020; 56: 2001948. DOI: 10.1183/13993003.01948-2020. PMID: 32817004; PMCID: PMC7439429.

Huang T., Stähler F. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue. BMC Neurosci. 2009; 10: 19. DOI: 10.1186/1471-2202-10-19. PMID: 19284620; PMCID: PMC2661083.

Guruprasad L. Human SARS CoV-2 spike protein mutations. Proteins. 2021; 89: 569–76. DOI: 10.1002/prot.26042. PMID: 33423311; PMCID: PMC8014176.

Guruprasad L. Evolutionary relationships and sequence-structure determinants in human SARS coronavirus-2 spike proteins for host receptor recognition. Proteins. 2020; 88: 1387–93. DOI: 10.1002/prot.25967. PMID: 32543705; PMCID: PMC7323375.

Planas D., Veyer D., Baidaliuk A. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021; 596: 276–80. DOI: 10.1038/s41586-021-03777-9. PMID: 34237773.

Chen J., Wang R., Gilby N.B., Wei G.W. Omicron (B.1.1.529): ­Infectivity, vaccine breakthrough, and antibody resistance. ArXiv [Preprint]. 2021: arXiv:2112.01318v1. PMID: 34873578; PMCID: PMC8647651.

Karim S.S.A., Karim Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021; 398: 2126–8. DOI: 10.1016/S0140-6736(21)02758-6. PMID: 34871545; PMCID: PMC8640673.

Published
2024-05-21
How to Cite
Maryanovich, A., & Kormilets, D. (2024). SARS CoV-2 PROTEINS AND HUMAN PROTEINS. Russian Biomedical Research, 9(1), 48-58. https://doi.org/10.56871/RBR.2024.11.95.006
Section
Статьи