INVOLVEMENT OF NORADRENALINE, SEROTONIN AND BRAIN NEUROTROPHIC FACTOR IN THE ANALGETIC EFFECTS OF VASOPRESSIN IN THE THERMAL TAIL IMMERSION TEST IN RATS
Abstract
The study of the role of the neuroendocrine system in the modulation of pain remains relevant. The analgesic properties of arginine vasopressin (AVP) are known, but the mechanisms underlying these effects are poorly understood. The aim of the study was to evaluate the effect of vasopressin receptor agonist type2, 1-deamino-8-D-arginine-vasopressin, DDAVP, on pain sensitivity and the content of norepinephrine (NE), serotonin (5-HT), dopamine (DA) and brain neurotrophic factor (BDNF) in the parietal cortex and spinal cord in the test of thermal immersion of the tail in rats. The study was conducted on male Wistar rats. The animals were divided into 4 groups: group 1 ― intact rats; group 2 ― received saline solution; Group 3 ― receivedDDAVP in a single dose of 2 ng and a cumulative dose of 10 ng; group 4 ― received DDAVP in a single dose of 2 μg and a cumulative dose of 10 μg. DDAVP was administered intranasally once a day for 5 days. The saline solution was administered according to the peptide application scheme. The content of corticosterone in blood serum was determined by enzyme immunoassay. The content of NE, 5-HT, DA and their metabolites in the brain was assessed using high-performance liquid chromatography. BDNF levels were assessed using enzyme immunoassay. DDAVP in different doses reduced pain sensitivity in rats. When DDAVP was administered in small doses, the content of NE decreased in the parietal cortex; NE levels increased and 5-HT content decreased in the spinal cord. After administration of the peptide in large doses, the content of NE decreased in the parietal cortex, and the levels of 5-HT decreased in the spinal cord. DDAVP in different doses increased the content of BDNF in the parietal cortex and spinal cord. Thus, it was found that DDAVPinduced analgesia is associated with the modulatory effect of the peptide on the exchange of NE, 5-HT and BDNF at the supraspinal and spinal levels.
References
Белокоскова C.Г., Цикунов С.Г. Эффективность селективного агониста V2 рецепторов вазопрессина, 1-дезамино-8-D-аргинин-вазопрессина, ДДАВП, в лечении болевого синдрома у больных с дегенеративно-дистрофическими заболеваниями позвоночника. Обзоры по клинич фармакол и лекарств терапии. 2016;14(3):58–65.
Белокоскова С.Г., Крицкая Д.В., Безнин Г.В. и др. 1-дезамино-8-D-аргинин-вазопрессин увеличивает содержание нейротрофического фактора мозга (BDNF) в плазме крови у крыс в модели посттравматического стрессового расстройства. Мед. акад. журнал. 2020;20(4):27–34. DOI.org/10.17816/MAJ46393.
Белокоскова С.Г., Цикунов С.Г Нейротрофические, нейропротективные, митогенные, антиоксидантные, антиапоптотические свойства вазопрессина. Успехи физиол. наук. 2022;53(4):50–61.DOI: 10.31857/S0301179822030055.
Белокоскова С.Г., Цикунов С.Г. Вазопрессин в регуляции функций мозга в норме и при патологии. СПб.: Арт-экспресс; 2020.
Гмиро В.Е., Сердюк С.Е. Сравнительное исследование аналгезирующего действия N-децилтропина (ИЭМ-1556), аденозина и мекамиламина. Рос. физиол. журн. им. И.М. Сеченова. 2017;103(10):1106–1113.
Ярушкина Н.И. Стресс-вызванная анальгезия: роль гормонов гипоталамо-гипофизарно-адренокортикальной системы. Интегративная физиология. 2020;1:23–31. DOI: 10.33910/2687-1270-2020-1-1-23-31.
Bannister K., Dickenson A.H. The plasticity of descending controls in pain: translational probing. J Physiol. 2017;595(13):4159–4166. DOI: 10.1113/JP274165.
Bardoni R., Ghirri A., Salio C. et al. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats. Dev Neurobiol. 2007;67(7):960–975. DOI: 10.1002/dneu.20401.
Cid-Jofré V., Moreno M., Reyes-Parada M. et al. Role of Oxytocin and Vasopressin in Neuropsychiatric Disorders: Therapeutic Potential of Agonists and Antagonists. Int J Mol Sci. 2021;22(21):12077. DOI: 10.3390/ijms222112077.
Cortes-Altamirano J.L., Olmos-Hernandez A., Jaime H.B. et al. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr Neuropharmacol. 2018;16(2):210–221. DOI: 10.2174/1570159X15666170911121027.
Heydari F., Azizkhani R., Majidinejad S. et al. A comparative study of intranasal desmopressin and intranasal ketamine for pain management in renal colic patients: A randomized double-blind clinical trial. Clin Exp Emerg Med. 2023. DOI: 10.15441/ceem.23.059.
Jacob S.N., Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits. 2018;12:51. DOI: 10.3389/fncir.2018.00051.
Jinushi K., Kushikata T., Kudo T. et al. Central noradrenergic activity affects analgesic effect of Neuropeptide S. J Anesth. 2018;32(1):48–53. DOI: 10.1007/s00540-017-2427-y.
Kordower J.H., Bodnar R.J. Vasopressin analgesia: Specificity of action and n,m-opioid effects. Peptides. 1984;5(4):747–756.
Le Bars D., Gozariu M., Cadden S.W. Animal models of nociception. Pharmacol Rev. 2001;53(4):597–652.
Merighi A., Salio C., Ghirri A. et al. BDNF as a pain modulator. Prog. Neurobiol. 2008;85:297–317. DOI: 10.1016/j.pneurobio.2008.04.004.
Millan M.J. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474. DOI: 10.1016/s0301-0082(02)00009-6.
Obata H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int J Mol Sci. 2017;18(11):2483. DOI: 10.3390/ijms18112483.
Qiu F., Hu W.P., Yang Z.F. Enhancement of GABA-activated currents by arginine vasopressin in rat dorsal root ganglion neurons. Sheng Li Xue Bao. 2014;66(6):647–657.
Schorscher-Petcu A., Sotocinal S., Ciura S. et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci. 2010;30(24):8274–8284. DOI: 10.1523/JNEUROSCI.1594-10.2010.
Siuciak J.A., Altar C.A., Wiegand S.J., Lindsay R.M. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res. 1994;633(1-2):326–30. DOI: 10.1016/0006-8993(94)91556-3).
Siuciak J.A., Clark M.S., Rind H.B. et al. BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. J Neurosci Res. 1998;52(2):149–58. DOI: 10.1002/(SICI)1097-4547(19980415)52:2<149::AID-JNR3>3.0.CO;2-A.
Siuciak J.A., Wong V., Pearsall D. et al. BDNF produces analgesia in the formalin test and modifies neuropeptide levels in rat brain and spinal cord areas associated with nociception. Eur J Neurosci. 1995;7(4):663–70. DOI: 10.1111/j.1460-9568.1995.tb00670.x.
Yang F.J., Ma L., Yang J. et al. Intranasal Vasopressin Relieves Orthopedic Pain After Surgery. Pain Manag Nurs. 2019;20(2):126–132. DOI: 10.1016/j.pmn.2018.06.001.
Yang J., Lu L., Wang H.C., et al. Effect of intranasal arginine vasopressin on human headache. Peptides. 2012;38(1):100–104. DOI: 10.1016/j.peptides.2012.07.029.
Yang J., Yang Y., Chen J.M. et al. Periaqueductal gray knockdown of V2R, not V1aR and V1bR receptor influences nociception in the rat. Neurosci Res. 2007;57(1):104–111. http://doi: 10.1016/j.neures.2006.09.011.
Yang J., Yuan H., Chu J. et al. Arginine vasopressin antinociception in the rat nucleus raphe magnus is involved in the endogenous opiate peptide and serotonin system. Peptides. 2009;30(7):1355–1361. DOI: 10.1016/j.peptides.2009.03.014.
Yao S., Kendrick K.M. Effects of Intranasal Administration of Oxytocin and Vasopressin on Social Cognition and Potential Routes and Mechanisms of Action. Pharmaceutics. 2022;14(2):323. DOI: 10.3390/pharmaceutics14020323.
You Z.D., Song C.Y., Wang C.H. et al. Role of locus coeruleus in analgesia caused by stimulation of supraoptic nucleus. Sheng Li Xue Bao. 1995;47(4):320–326.
Zhou A.W., Li W.X., Guo J. et al. Facilitation of AVP(4-8) on gene expression of BDNF and NGF in rat brain. Peptides. 1997;18(8):1179–1187.
Zubov A.S., Ivleva I.S., Pestereva N.S. et al. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology (Berl). 2022;239(9):2787–2798. DOI: 10.1007/s00213-022-06159-9.
Copyright (c) 2024 Russian Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.