DISRUPTED SYNTHESIS OF NEUROTRANSMITTERS IN THE PATHOPHYSIOLOGY OF DIABETIC ENCEPHALOPATHY (LITERATURE REVIEW)

Keywords: diabetic encephalopathy, gamma-aminobutyric acid, glutamate, dopamine, acetylcholine, serotonin

Abstract

This review provides a summary of data on the role of neurotransmitter synthesis abnormalities in the pathophysiology of diabetic encephalopathy (DE). It covers the key neurotransmitters that could be involved in the pathogenesis of DE: gamma-aminobutyric acid, glutamate, dopamine, acetylcholine and serotonin. The article describes the main pathophysiological mechanisms that may play a role in the development and progression of DE in the course of diabetes mellitus in a patient with disrupted release of key neurotransmitters. It provides data confirming the hyperreactivity of the GABAergic, glutamatergic and dopaminergic systems, along with the hypoactivity of the cholinergic and serotoninergic systems, as part of the pathophysiology of DE. Also provided are results of preclinical and clinical studies confirming that patients with type 1 and 2 DM have abnormalities in the synthesis of neurotransmitters, which could serve as early diagnostic markers of DE.

References

Быков Ю.В. Оксидативный стресс и диабетическая энцефалопатия: патофизиологические механизмы. Современные проблемы науки и образования. 2022;6(2):39. DOI: 10.17513/spno.32314.

Быков Ю.В., Батурин В.А. Диабетическая энцефалопатия при сахарном диабете в детском возрасте: патофизиология и клинические проявления (обзор). Саратовский научно-медицинский журнал. 2022;18(1):46–49.

Быков Ю.В., Батурин В.А. Когнитивные нарушения при сахарном диабете 1 типа. Сибирский научный медицинский журнал. 2023;43(1):4–12. DOI: 10.18699/SSMJ20230101.

Antila K., Lotjonen J., Thurfjell L., Laine J., Massimini M., Rue­ckert D. The PredictAD project: development of novel biomarkers and analysis software for early diagnosis of the Alzheimer's disease. Interface Focus. 2013;3(2):20120072. DOI: 10.1098/rsfs.2012.0072.

Bharadwaj P., Wijesekara N., Liyanapathirana M, Newsholme P, Ittner L., Fraser P., Verdile G. The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins. J Alzheimer’s Dis. 2017;59:421–432. DOI: 10.3233/JAD-161192.

Burd I., Welling J., Kannan G., Johnston M.V. Excitotoxicity as a Common Mechanism for Fetal Neuronal Injury with Hypoxia and Intrauterine Inflammation. Adv Pharmacol. 2016;76:85–101. DOI: 10.1016/bs.apha.2016.02.003.

Cai Y., Li X., Zhou H., Zhou J. The serotonergic system dysfunction in diabetes mellitus. Front Cell Neurosci. 2022;16:899069. DOI: 10.3389/fncel.2022.899069.

Conway M.E. Alzheimer's disease: targeting the glutamatergic system. Biogerontology. 2020;21(3):257–274. DOI: 10.1007/s10522-020-09860-4.

Cruz-Morales S.E., Quirarte GL, Diaz del Guante MA, Prado-Alcala R.A. Effects of GABA antagonists on inhibitory avoidance. Life Sci. 1993;53(16):1325–1330.

Davalli A.M., Perego C., Folli F.B. The potential role of glutamate in the current diabetes epidemic. Acta Diabetol. 2012;49(3):167–83. DOI: 10.1007/s00592-011-0364-z.

Derkach K.V., Bondareva V.M., Chistyakova O.V., Berstein L.M., Shpakov A.O. The effect of long-term intranasal serotonin treatment on metabolic parameters and hormonal signaling in rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes. Int. J. Endocrinol. 2015;2015:245459. DOI: 10.1155/2015/245459.

Dong M., Ren M., Li C., Zhang X., Yang C., Zhao L., Gao H. Analysis of Metabolic Alterations Related to Pathogenic Process of Diabetic Encephalopathy Rats. Front Cell Neurosci. 2019: 12: 527. DOI: 10.3389/fncel.2018.00527.

Gasecka A., Siwik D., Gajewska M., Jaguszewski M.J., Mazurek T., Filipiak K.J., Postuła M., Eyileten G. Early Biomarkers of Neurodegenerative and Neurovascular Disorders in Diabetes. J Clin Med. 2020;9(9):2807. DOI: 10.3390/jcm9092807.

Han X., Min M., Wang J., Bao Z., Fan H., Li X., Adelusi T.I., Zhou X., Yin X. Quantitative profiling of neurotransmitter abnormalities in brain, cerebrospinal fluid, and serum of experimental diabetic encephalopathy male rat. J Neurosci Res. 2018;96(1):138–150. DOI: 10.1002/jnr.24098.

Hasselmo M.E. The role of acetylcholine in learning and me­mory. Curr Opin Neurobiol. 2006;16(6):710–5. DOI: 10.1016/j.conb.2006.09.002.

Jangra A., Datusalia A.K., Khandwe S., Sharma S.S. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacol Biochem Behav. 2013:114–115:43–51. DOI: 10.1016/j.pbb.2013.10.021.

Khoshnevisan K., Chehrehgosha M., Sajjadi-Jazi S.M., Meftah A.M. Tryptophan and serotonin levels as potent biomarkers in diabetes mellitus complications: a new approach of diagnostic role. J Diabetes Metab Disord. 2022;21(2):1923–1934. DOI: 10.1007/s40200-022-01096-y

Kleinridders A., Cai W., Cappellucci L., Ghazarian A., Collins W.R., Vienberg S.G., Pothos E.N., Kahn C.R. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A. 2015;112(11):3463–8. DOI: 10.1073/pnas.1500877112.

Kruse A.O., Bustillo J.R. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry. 2022;12(1):500. DOI: 10.1038/s41398-022-02253-w.

Kumar A., Chaudhary T. and Mishra J. Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington's disease like symptoms in rats: behavioral, biochemical, cellular and histological evidences. Eur. J. Pharmacol. 2013;720(1-3):16–28. DOI: 10.1016/j.ejphar.2013.10.057.

Lau A., Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv – European Journal of Physiology. 2010;460(2):525–542. DOI: 10.1007/s00424-010-0809-1.

Lee S.E., Han K., Baek J.Y., Ko K.S., Lee K.U., Koh E.H. Taskforce Team for Diabetes Fact Sheet of the Korean Diabetes Association Association Between Diabetic Retinopathy and Parkinson Disease: The Korean National Health Insurance Service Database. J Clin Endocrinol Metab. 2018;103:3231–3238. DOI: 10.1210/jc.2017-02774.

Levenga J., Krishnamurthy P., Rajamohamedsait H., Wong H., Franke T.F., Cain P. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavio­ral impairments. Acta. Neuropathol. Commun. 2013;1(1):34. DOI: 10.1186/2051-5960-1-34.

Liapi C., Kyriakaki A., Zarros A., Galanopoulou P., Al-Humadi H., Dontas, I. Choline-deprivation alters crucial brain enzyme acti­vities in a rat model of diabetic encephalopathy.Metab Brain Dis. 2010;25(3):269–276. DOI: 10.1007/s11011-010-9205-y.

Menge B.A., Schrader H., Ritter P.R., Ellrichmann M., Uhl W., Schmidt W. E. Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regul. Pept. 2010;160(1-3):75–80. DOI: 10.1016/j.regpep.2009.08.001.

Pagano G., Polychronis S., Wilson H., Giordano B., Ferrara N., Niccolini F., Politis M. Diabetes mellitus and Parkinson disease. Neuro­logy. 2018;90:e1654–e1662. DOI: 1212/WNL.0000000000005475.

Papouin T., Ladépêche L., Ruel J., Sacchi S., Labasque M., Hanini M., Groc L., Pollegioni L., Mothet J.P., Oliet S. H. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150,633–646. DOI: 10.1016/j.cell.2012.06.02.

Perry E., Walker M., Grace J., Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends. Neurosci. 1999;22(6):273–280.

Piątkowska-Chmiel I., Gawrońska-Grzywacz M., Popiołek Ł, Herbet M., Dudka J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci Rep. 2022;12(1):6708. DOI: 10.1038/s41598-022-10187-y.

Pose-Burd I., Welling J., Kannan G., Johnston M.V. Excitotoxicity as a Common Mechanism for Fetal Neuronal Injury with Hypoxia and Intrauterine Inflammation. Adv Pharmacol. 2016;76:85–101. DOI: 10.1016/bs.apha.2016.02.003.

Pose-Utrilla J., García-Guerra L., Del Puerto A., Martín A., Jurado-Arjona J., De León-Reyes N.S., Gamir-Morralla A., Sebastián-Serrano A., García-Gallo M., Kremer L., Fielitz J., Ireson C., JPérez-Álvarez J., Ferrer I. Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nat Commun. 2017;8(1):2275. DOI: 10.1038/s41467-017-02322-5.

Prakash A., Kalra J., Mani V., Ramasamy K., Majeed A.B. Pharmacological approaches for Alzheimer's disease: neurotransmitter as drug targets. Expert. Rev. Neurother. 2015;15(1):53–71. DOI: 10.1586/14737175.2015.988709.

Ramamoorthi K., Lin Y. The contribution of GABAergic dysfunction to neurodevelopmental disorders. Trends Mol Med. 2011;17(8):452–462. DOI: 10.1016/j.molmed.2011.03.003.

Shiihara T., Kato M., Ichiyama T., Takahashi Y., Tanuma N., Miya­ta R. Acute encephalopathy with refractory status epilepticus: bila­teral mesial temporal and claustral lesions, associated with a peripheral marker of oxidative DNA damage. J. Neurol. Sci. 2006;250(1-2):159–161. DOI: 10.1016/j.jns.2006.07.002.

Singhal K., Sandhir R. L-type calcium channel blocker ameliorates diabetic encephalopathy by modulating dysregulated calcium homeostasis. J Neurosci. Res. 2015;93(2):296–308. DOI: 10.1002/jnr.23478.

Small D.M. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci. 2017;11:134. DOI: 10.3389/fnins.2017.00134.

Thielen J.W., Gancheva S., Hong D., Rohani Rankouhi S., Chen B., Apostolopoulou M., Anadol-Schmitz E., Roden M., Norris D.G., Tendolkar I. Higher GABA concentration in the medial prefrontal cortex of Type 2 diabetes patients is associated with episodic memory dysfunction. Hum Brain Mapp. 2019;40(14):4287–4295. DOI; 10.1002/hbm.24702.

Utrilla J., García-Guerra L., Del Puerto A., Martín A., Jurado-Arjona J., De León-Reyes N.S., Gamir-Morralla A., Sebastián-Serrano A., García-Gallo M., Kremer L., Fielitz J., Ireson C., Pérez-Álvarez J., Ferrer I. Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nat Commun. 2017;8(1):2275. DOI: 10.1038/s41467-017-02322-5.

Van Bussel F.C., Backes W.H., Hofman P.A., Puts N.A., Edden R.A., van Boxtel M.P. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning. Medicine. 2016;95:e4803 DOI: 10.1097/MD.0000000000004803.

Wan Y., Wang, Q., Prud'homme G.J. GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes. Metab. Syndr. Obes. 2015;8:79–87. DOI: 10.2147/DMSO.S50642.

Wang C., Li J., Zhao S., Huang L. Diabetic encephalopathy cau­ses the imbalance of neural activities between hippocampal glutamatergic neurons and GABAergic neurons in mice. Brain Res. 2020;1742:146863. DOI: 10.1016/j.brainres.2020.146863.

Welsh B., Wecker L. Effects of streptozotocin-induced diabetes on acetylcholine metabolism in rat brain. Neurochem Res. 1991;16(4):453–460.

Wiegers E.C., Rooijackers H.M., van Asten J.J.A., Tack C.J., Heerschap A., de Galan B.E., van der Graaf M. Elevated brain glutamate levels in type 1 diabetes: correlations with glycaemic control and age of disease onset but not with hypoglycaemia awareness status. Diabetologia. 2019;62(6):1065–1073. DOI: 10.1007/s00125-019-4862-9.

Xu Y., Cao K., Guo B., Xiang J., Dong Y.T., Qi X.L., Yu W.F., Xiao Y., Guan Z.Z. Lowered levels of nicotinic acetylcholine receptors and elevated apoptosis in the hippocampus of brains from patients with type 2 diabetes mellitus and db/db mice. Aging (Albany NY). 2020;12(14):14205–14218. DOI: 10.18632/aging.103435.

Zhou H., Rao Z., Zhang Z., Zhou J. Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol. 2023;43(2):605–619. DOI: 10.1007/s10571-022-01214-7.

Zhou X., Zhu Q., Han X., Chen R., Liu Y., Fan H., Yin X. Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat. Can J Physiol Pharmacol. 2015;93(11):1007–13. DOI: 10.1139/cjpp-2015-0118.

Published
2024-07-31
How to Cite
Bykov, Y. (2024). DISRUPTED SYNTHESIS OF NEUROTRANSMITTERS IN THE PATHOPHYSIOLOGY OF DIABETIC ENCEPHALOPATHY (LITERATURE REVIEW). Russian Biomedical Research, 9(2), 57-63. https://doi.org/10.56871/RBR.2024.68.38.007
Section
Статьи