MOLECULAR GENETIC ASPECTS OF CORNEAL TISSUE REPAIR
Abstract
The article is devoted to a scientific literature review on the issues of reparative histogenesis and cell differentiation in the cornea at the genetic level. The most vulnerable membrane in case of eye injuries is the cornea. In this regard, the assessment of its regeneration processes, including at the molecular genetic level, becomes important. Knowledge of the molecular biology of regenerative genes is far from complete, and many aspects remain insufficiently studied. The genes MKI67, TAB3, PAX6 are involved in the regeneration of corneal tissue, including after
injury. This review focuses on these three genes. Ki-67 protein is a universal marker of proliferation and is necessary for maintaining the cell cycle. Pax-6 is an early marker of corneal epithelial cell differentiation. Expression of this gene is suppressed in many tissues of an adult, but it persists in eye cornea, participating in the normal functioning of the cornea. TAB3 gene, as a correlate of TGF-β activation, helps to increase the intensity of proliferation and migration of epithelial cells and promotes rapid healing of the wound surface. Currently, the study of the patterns of cyto- and
histogenesis, differentiation of cells and tissues of the organ of vision, their physiological and reparative regeneration and the regulation of these processes at the molecular genetic level in the aspect of regenerative medicine is being updated.
References
Бабиченко И.И., Ковязин В.А. Новые методы иммуногистохимической диагностики опухолевого роста. М.: РУДН; 2008.
Васильева Т.А., Воскресенская А.А., Поздеева Н.А., Марахонов А.В., Зинченко Р.А. Характеристика гена РАХ6 и роль его мутаций в развитии наследственной патологии органа зрения. Генетика. М.: Наука. 2018;54(9):979–987.
Гололобов В.Г., Гайворонский И.В., Деев Р.В. с соавт. Репаративная регенерация многослойного эпителия роговицы: биотехнологический потенциал. Клеточная трансплантология и тканевая инженерия. 2008;3(4):55–59.
Канюков В.Н., Стадников А.А. Экспериментально-гистологические основы новых технологий в офтальмохирургии. Оренбург: Южный Урал; 2009.
Кнорре А.Г. Эмбриональный гистогенез: морфологические очерки. Медицина, Ленинградское отделение; 1971.
Bruno S., Darzynkiewicz Z. Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells. Cell Prolif. 1992;25:31–40. DOI:10.1111/j.1365-2184.1992.tb01435.x.
Chui J., Coroneo M.T., Tat L.T., Crouch R., Wakefield D., Di Girolamo N. Ophthalmic pterygium: A stem cell disorder with premalignant features. Am J Pathol. 2011;178:817–27.
Connor T.B., Jr., Roberts A.B., Sporn M.B., Danielpour D., Dart L.L., Michels R.G., de Bustros S., Enger C., Kato H., Lansing M. et al. Correlation of fibrosis and transforming growth factor-β type 2 levels in the eye. J. Clin. Investig. 1989;83:1661–1666.
Darland D.C., Link B.A., Nishi R. Activin A and follistatin expression in developing targets of ciliary ganglion neurons suggests a role in regulating neurotransmitter phenotype. Neuron. 1995;15:857–866. DOI:10.1016/0896-6273(95)90176-0.
Davis J., Duncan M.K., Robison W.G. Jr, Piatigorsky J. Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci. 2003;116:2157–2167.
Davis J., Piatigorsky J. Overexpression of Pax6 in mouse cornea directly alters corneal epithelial cells: changes in immune function, vascularization, and differentiation. Invest Ophthalmol Vis Sci. 2011;52(7):4158–68. DOI: 10.1167/iovs.10-6726.
Duchrow M., Schluter C., Wohlenberg C., Flad H.D., Gerdes J. Molecular characterization of the gene locus of the human cell proliferation-associated nuclear protein defined by monoclonal antibody Ki-67. Cell Prolif. 1996;29:1–12. DOI:10.1111/j.1365-2184.1996.tb00090.x.
Fukuda K., Chikama T., Takahashi M., Nishida T. Long-term follow-up after lamellar keratoplasty in a patient with bilateral idiopathic corneal keloid. Cornea. 2011;30:1491–1494. DOI: 10.1097/ICO.0b013e31822018f2.
García-Villegas R., Escamilla J., Sánchez-Guzmán E., et al. Pax-6 is expressed early in the differentiation of a corneal epithelial model system. J. Cell. Physiol. 2009;220:348–356.
Gerdes J. et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am. J. Pathol. 1991;138:867–873.
Gerdes J., Schwab U., Lemke H., Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 1983;31:13–20. DOI:10.1002/ijc.2910310104.
Govinden R., Bhoola K.D. Genealogy, expression, and cellular function of transforming growth factor-β Pharmacol. Ther. 2003;98:257–265. DOI: 10.1016/S0163-7258(03)00035-4.
Hachana S., Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells. 2022;11(15):2336. DOI: 10.3390/cells11152336.
Heidebrecht H.J., Buck F., Haas K., Wacker H.H., Parwaresch R. Monoclonal antibodies Ki-S3 and Ki-S5 yield new data on the ‘Ki-67'proteins. Cell Prolif. 1996;29:413–425. DOI:10.1111/j.1365-2184.1996.tb00984.x
Hill R.E., Favor J., Hogan B.L.M., Ton C.C.T., Saunders G..F, Hanson I.M., Prosser J., Jordan T., Hastie N.D., van Heyningen V. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354:522–525.
Huh M.I., Chang Y., Jung J.C. Temporal and spatial distribution of TGF-β isoforms and signaling intermediates in corneal regenerative wound repair. Histol. Histopathol. 2009;24:1405–1416. DOI: 10.14670/HH-24.1405.
Kitazawa K., Hikichi T., Nakamura T., Sotozono C., Kinoshita S., Masui S. PAX6 regulates human corneal epithelium cell identity. Exp Eye Res. 2017;154:30–38. DOI: 10.1016/j.exer.2016.11.005.
Koroma B.M., Yang J., Sundin O.H. The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci. 1997;38:108–120.
Latta L., Stachon T., Seitz B., Szentmáry N. Response to: HCE-T cells express cornea-specific differentiation marker, PAX6 protein. Graefes Arch Clin Exp Ophthalmol. 2022;260(12):4019–4020. DOI: 10.1007/s00417-022-05762-y.
Leiper L.J., Walczysko P., Kucerova R., Ou J., Shanley L.J., Lawson D., Forrester J.V., McCraig C.D., Zhao M., Collinson J.M. The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+/- mouse model of epithelial wound-healing delay. BMC Biol. 2006;4:27.
Liang K., Zhengxuan J., Ding B.Q., Cheng P., Huang D.K., Tao L.M. Expression of cell proliferation and apoptosis biomarkers in pterygia and normal conjunctiva. Molecular Vision. 2011;17:1687–93.
Mahesh M., Mittal S.K., Kishore S., Singh A., Gupta N., Rana R. Expression of p53 and Ki-67 proteins in patients with increasing severity and duration of pterygium. Indian J Ophthalmol. 2021;69(4):847–850. DOI: 10.4103/ijo.IJO_1034_20.
Manuel M.N., Mi D., Mason J.O., Price D.J. Regulation of cerebral cortical neurogenesis by the Pax6 transcrip-tion factor. Front Cell Neurosci. 2015;9:70. DOI:10.3389/fncel.2015.00070.
Medeiros C.S., Saikia P., de Oliveira R.C., Lassance L., Santhiago M.R., Wilson S.E. Descemet’s Membrane Modulation of Posterior Corneal Fibrosis. Invest Ophthalmol Vis Sci. 2019;60(4):1010–1020. DOI: 10.1167/iovs.18-26451.
Miller I., Min M., Yang C., Tian C., Gookin S., Carter D., Spencer S.L. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep. 2018;24:1105–1112. DOI:10.1016/j.celrep.2018.06.110.
Mohan R.R., Sharma A., Netto M.V., Sinha S., Wilson S.E. Gene therapy in the cornea. Prog. Retin. Eye Res. 2005;24:537–559. DOI: 10.1016/j.preteyeres.2005.04.001.
Nam S.M., Maeng Y.S., Kim E.K., Seo K.Y., Lew H. Ex Vivo Expansion of Human Limbal Epithelial Cells Using Human Placenta-Derived and Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int. 2017;2017:4206187. DOI: 10.1155/2017/4206187.
Okumura N., Kay E.P., Nakahara M., Hamuro J., Kinoshita S., Koizumi N. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS ONE. 2013;8:e58000. DOI: 10.1371/journal.pone.0058000.
Ouyang H., Xue Y., Lin Y. et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511(7509):358–361.
Saika S. TGF-β signal transduction in corneal wound healing as a therapeutic target. Cornea. 2004;23:S25–S30. DOI: 10.1097/01.ico.0000136668.41000.73.
Sasamoto Y., Hayashi R., Park S.J., Saito-Adachi M., Suzuki Y., Kawasaki S., Quantock A.J., Nakai K., Tsujikawa M., Nishida K. PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-specific Genes. Sci Rep. 2016;6:20807. DOI: 10.1038/srep20807.
Schluter C., Duchrow M., Wohlenberg C., Becker M.H., Key G., Flad H.D., Gerdes J. The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J. Cell Biol. 1993;123:513–522. DOI:10.1083/jcb.123.3.513.
Shah M., Foreman D.M., Ferguson M.W. Control of scarring in adult wounds by neutralising antibody to transforming growth factor β Lancet. 1992;339:213–214. DOI: 10.1016/0140-6736(92)90009-R.
Tandon A., Tovey J.C., Sharma A., Gupta R., Mohan R.R. Role of transforming growth factor Β in corneal function, biology and pathology. Curr. Mol. Med. 2010;10:565–578. DOI: 10.2174/1566524011009060565.
Ton C.C., Hirvonen H., Miwa H. et al. Positional cloning and characterization of a paired box- and homeo-box-containing gene from the aniridia region. Cell.1991;67(6):1059–1074.
van Diest P.J., Brugal G., Baak J.P. Proliferation markers in tumours:Interpretation and clinical value. J Clin Pathol. 1998;51:716–24.
Zhang W., Cveklova K., Oppermann B., Kantorow M., Cvekl A. Quantitation of PAX6 and PAX6(5a) transcript levels in adult human lens, cornea, and monkey retina. Mol Vis. 2001;7:1–5.
Zieske J.D., Hutcheon A.E., Guo X., Chung E.H., Joyce N.C. TGF-β receptor types I and II are differentially expressed during corneal epithelial wound repair. Investig. Ophthalmol. Vis. Sci. 2001;42:1465–1471.
Copyright (c) 2024 Russian Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.