ПРОГНОСТИЧЕСКАЯ РОЛЬ ОЖИРЕНИЯ ДЛЯ ЗДОРОВЬЯ МАТЕРИ И РЕБЕНКА В ПЕРВЫЙ ГОД ЖИЗНИ

  • Д.О. Иванов Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Н.Э. Прокопьева Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Ю.В. Петренко Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
Ключевые слова: материнское ожирение, перинатальный период, метаболический синдром, потомство матерей с ожирением, мать–плацента–плод

Аннотация

За последние несколько десятилетий распространенность ожирения во всем мире достигла масштабов эпидемии. Ожирение и избыточный вес во время беременности связаны с ухудшением исходов для матери и ребенка. Кроме того, исследования показывают, что материнское ожирение может привести к долгосрочным последствиям для потомства, увеличивая риск развития психоневрологических расстройств, метаболических, атопических заболеваний, а также возможных изменений иммунного / воспалительного статуса. В дополнение к генетическим механизмам все больше данных свидетельствует об индукции эпигенетических изменений материнским ожирением, которые могут влиять на фенотип потомства, тем самым программируя риск ожирения и кардиометаболических заболеваний. Однако механизмы, связывающие материнскую среду с неблагоприятными краткосрочными и долгосрочными последствиями, остаются плохо изученными. В данном обзоре представлены современные знания о влиянии материнского ожирения во время беременности на ребенка в первый год жизни. Понимание этих процессов имеет ключевое значение для разработки терапевтических вмешательств с целью предотвращения будущих сердечно-сосудистых и метаболических патологий у последующих поколений.

Литература

World Health Organization (WHO). Obesity and overweight. January 2015. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 2 April 2016.

Hruby A., Hu F.B. The epidemiology of obesity: a big picture. Pharmacoeconomics.2015; 33: 673–89.

Poston L., Caleyachetty R., Cnattingius S. et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol.2016; 4(12): 1025–36. DOI: 10.1016/S2213-8587(16)30217-0.

Hales C.M., Carroll M.D., Fryar C.D., Ogden C.L. Prevalence of Obesity and Severe Obesity Among Adults: United State-2018. NCHS Data Brief. 2020; 360: 1–8.

Грицинская В.Л., Новикова В.П., Хавкин А.И. К вопросу об эпидемиологии ожирения у детей и подростков (систематический обзор и мета-анализ научных публикаций за 15-летний период). Вопросы практической педиатрии. 2022; 17(2): 126–35. DOI: 10.20953/1817-7646-2022-2-126-135.

Gaillard R., Steegers EAP., Franco O.H. et al. Maternal weight gain in different periods of pregnancy and childhood cardio-metabolic outcomes. The Generation R Study. International Journal of Obesity. 2015; 39: 677–85.

Hinkle S.N., Sharma A.J., Swan D.W. et al. Excess Gestational Weight Gain Is Associated with Child Adiposity among Mothers with Normal and Overweight Prepregnancy Weight Status. The Journal of Nutrition. 2012; 142: 1851–8.

Hochner H., Friedlander Y., Calderon-Margalit R. et al. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-up Study. Circulation.2012; 12 5: 13 81– 9.

Oken E., Rifas-Shiman S.L., Field A.E. et al. Maternal Gestational Weight Gain and Offspring Weight in Adolescence. 2008; 112: 8.

Kaar J.L., Crume T., Brinton J.T. et al. Maternal Obesity, Gestational Weight Gain, and Offspring Adiposity: The Exploring Perinatal Outcomes among Children Study. The Journal of Pediatrics. 2014; 165: 509–15.

Josey M.J., McCullough L.E., Hoyo C., Williams-DeVane C. Overall gestational weight gain mediates the relationship between maternal and child obesity. BMC public health. 2019; 19: 1062.

Arrowsmith S., Wray S., Quenby S. Maternal obesity and labour complications following induction of labour in prolonged pregnancy. BJOG. 2011; 118(5): 578–88.

Yogev Y., Catalano P.M. Pregnancy and obesity. Obstet. Gynecol. Clin. North Am. 2009; 36(2): 285–300.

Bogaerts A., Witters I., Van den Bergh B.R. et al. Obesity in pregnancy: altered onset and progression of labour. Midwifery. 2013; 29(12): 1303–13.

HAPO Study Cooperative Research Group, Metzger B.E., Lowe L.P., Dyer A.R., Trimble E.R., Chaovarindr U. et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008; 358(19): 19 91–20 02

Wu D., Hu D., Chen H. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 2018; 559: 637–41.

Комшилова К.А., Дзгоева Ф.Х. Беременность и ожирение. Ожирение и метаболизм. 2009; 4: 9–13.

Чухарева Н.А., Рунихина Н.К., Дудинская Е.Н. Особенности течения беременности у женщин с ожирением. Акушерство и гинекология. 2014; 2: 9–13.

Lazo-de-la-Vega-Monroy M-L., Mata-Tapia K-A., Garcia-Santillan J-A. et al. Association of placental nutrient sensing pathways with birth weight. Reproduction.2020; 160: 455–68.

Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb. Perspect. Biol. 10(10), 1–17. DOI: 10.1101/cshperspec t. a030338.

Zhu M.J., Du M., Nathanielsz P.W., Ford S.P. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010; 31(5): 387–91. DOI: 10.1016/j.placenta.2010.02.002.

Romagnani S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000; 85(1): 9–18. DOI: 10.1016/S1081-1206(10)62426 -X .

Liang T., Jinglong X., Shusheng D., Aiyou W. Maternal obesity stimulates lipotoxicity and up-regulates inflammatory signaling pathways in the full-term swine placenta. Anim Sci J.2018; 89: 1310–22.

Brass E., Hanson E., O’Tierney-Ginn P.F. Placental oleic acid uptake is lower in male offspring of obese women. Placenta. 2013; 34: 503–9.

Jansson N., Rosario F.J., Gaccioli F. et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013; 98: 105–13.

Flenady V., Koopmans L., Middleton P. et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet Lond Engl. 2011; 377(9774): 1331–40.

Aune D., Saugstad O.D., Henriksen T., Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA. 2014; 311: 1536–46.

Ehrenberg H.M., Mercer B.M., Catalano P.M. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 2004; 191: 964–8.

Sewell M.F., Huston-Presley L., Super D.M. et al. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol.2006; 195: 1100–3.

Whitelaw A.G. Influence of maternal obesity on subcutaneous fat in the newborn. Br Med J.

; 1: 985–6.

Andres A., Hull H.R., Shankar K. et al. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity. Obes Silver Spring Md.2015; 23: 1252–8.

Jolly M.C., Sebire N.J., Harris J.P. et al. Risk factors for macrosomia and its clinical consequences: a study of 350, 311 pregnancies. Eur J Obstet Gynecol Reprod Biol. 2003; 111(1): 9–14.

Nesbitt T.S., Gilbert W.M., Herrchen B. Shoulder dystocia and associated risk factors with macrosomic infants born in California. Am J Obstet Gynecol. 1998; 179(2): 476–80.

Turner D., Monthé-Drèze C., Cherkerzian S. et al. Maternal obesity and cesarean section delivery: additional risk factors for neonatal hypoglycemia? J Peri natol Off J Calif Perinat Assoc. 2019; 39(8):1057– 6 4.

Stanley C.A., Rozance P.J., Thornton P.S. et al. Re-evaluating “transitional neonatal hypoglycemia”: mechanism and implications for management. J Pediatr. 2015; 166(6): 1520–5.e1.

Gimeno R.E., Klaman L.D. Adipose tissue as an active endocrine organ: recent advances. 2005; 5: 122–8.

Hutley L., Prins J.B. Fat as an endocrine organ: relationship to the metabolic syndrome. 2005; 330: 280–9.

Kahn B.B., Flier J.S. Obesity and insulin resistance. 2000; 106: 473–81.

Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. 2006; 444: 840–6.

Matsuzawa Y., Funahashi T., Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. 1999; 892: 146–54.

Montague C.T., O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. 2000; 49: 883–8.

Ronti T., Lupattelli G., Mannarino E. The endocrine function of adipose tissue: an update. 2006; 64: 355– 65.

Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. 2001; 104: 531–43.

Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. 2005; 184: 285–93.

Catalano P.M., Hoegh M., Minium J. et al. Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. 2006; 49: 1677–85.

Farvid M.S., Ng T.W., Chan D.C. et al. Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia. 2005; 7: 406–13.

Gable D.R., Hurel S.J., Humphries S.E. Adiponectin and its gene variants as risk factors for insulin resistance, the metabolic syndrome and cardiovascular disease. 2006; 188: 231–44.

Kirwan J.P., Hauguel-De M.S., Lepercq J. et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. 2002; 51: 2207–13.

Lopez-Bermejo A., Fernandez-Real J.M., Garrido E. et al. Maternal soluble tumour necrosis factor receptor type 2 (sTNFR2) and adiponectin are both related to blood pressure during gestation and infant’s birthweight. 2004; 61: 544–52.

Matsuzawa Y. The metabolic syndrome and adipocytokines. 2006; 580: 2917–21.

McLachlan K.A., O’Neal D., Jenkins A., Alford F.P. Do adiponectin, TNFalpha, leptin and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes Metab Res Rev. 2006; 22: 131–8.

Ouchi N., Kihara S., Arita Y. et al. Adiponectin, an adi pocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. 2000; 102: 1296–1301.

Retnakaran R., Hanley A.J., Raif N. et al. Reduced adi ponectin concentration in women with gestational diabetes: a potential factor in progression to type 2 diabetes. 2004; 27: 799–800.

Silha J.V., Krsek M., Skrha J.V. et al. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. 2003; 149: 331–5.

Steppan C.M., Lazar M.A. Resistin and obesity-associated insulin resistance. 2002; 13: 18–23.

Tilg H., Moschen .AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. 2006; 6: 772–83.

Unger R.H. Hyperleptinemia: protecting the heart from lipid overload. 2005; 45: 1031–4.

Смирнова Н.Н., Куприенко Н.Б., Петренко Ю.В., Новикова В.П. Материнское ожирение и система «мать-плацента-плод»: доказанные механизмы влияния. Children's Medicine of the North-West. 2021; 9(3): 31–9.

Yokota T., Oritani K., Takahashi I. et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. 2000; 96: 1723–32.

Harmon K.A., Gerard L., Jensen D.R. et al. Continuous glucose profiles in obese and normal-weight pregnant women on a controlled diet: metabolic determinants of fetal growth. Diabetes Care. 2011; 34(10): 2198–204. DOI: 10.2337/dc11-0723.

Смирнова Н.Н., Хавкин А.И., Новикова В.П. Состав грудного молока при ожирении матери: влияние на развитие ребенка. Вопросы практической педиатрии. 2022; 17(1): 167–76. DOI: 10.20953/1817-7646 -2022-1-167-176.

Цепилова М.О., Полякова К.Д. Влияние активных метаболитов грудного молока и их производных на организм новорожденного. Проба пера: Материалы межрегиональной научной конференции молодых ученых «VI Малые Апрельские чтения памяти профессора М.В. Пиккель», Архангельск, 01 апреля 2023 года. Выпуск 6. Архангельск: Северный государственный медицинский университет; 2023.

Смирнова Н.Н., Хавкин А.И., Куприенко Н.Б., Новикова В.П. Бактерии и вирусы грудного молока. Вопросы детской диетологии. 2022; 20(2): 74–82. DOI: 10.20953/1727-5784-2022-2-74-82. EDN BBIKOO.

Metzger B.E., Lowe L.P., Dyer A.R. et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J M e d . 20 0 8; 358(19): 19 91–20 02 . D O I: 10.1056/ N E J -Moa0707943.

Xiang A.H., Peters R.K., Trigo E. et al. Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes. Diabetes. 1999; 48(4): 848–54. DOI: 10.2337/diabetes.48.4.848.

Friedman J.E., Ishizuka T., Shao J. et al. Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes. 1999; 48(9): 1807–14. DOI: 10.2337/diabetes.48.9.1807.

Catalano P.M., Ehrenberg H.M. The short- and longterm implications of maternal obesity on the mother and her offspring. BJOG. 2006; 113(10): 1126–3 3 . D O I : 10 .1111/ j .147 1 - 0 5 2 8 . 2 0 0 6 . 0 0 9 8 9 . x .

Catalano P.M., Presley L., Minium J., Hauguel-de Mouzon S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009; 32(6): 1076 – 80. DOI: 10. 2337/dc08 -2077.

Toran-Allerand C.D., Ellis L., Pfenninger K.H. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? Brain Res. 1988; 469(1-2): 87–100. DOI: 10.1016/0165-3806(88)90172-1.

Recio-Pinto E., Ishii D.N. Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 1984; 302(2): 323–34. DOI: 10.1016/0006-8993(84)90246-4.

Lázár B.A., Jancsó G., Pálvölgyi L. et al. Insulin confers differing effects on neurite outgrowth

in sepa rate populations of cultured dorsal root ganglion neurons: The role of the insulin receptor. Front Neurosci. 2018; 12: 732. DOI: 10.3389/fnins.2018.00732.

Song J., Wu L., Chen Z. et al. Axons guided by insulin receptor in drosophila visual system. Science. 2003; 300(5618): 502–5. DOI: 10.1126/science.1081203.

Fex Svenningsen A., Kanje M. Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H]thymidine incorporation through their respective receptors. Glia. 1996; 18(1): 68–72. DOI: 10.1002/(SICI)1098-1136(199609)18:1.

Dudek H., Datta S.R., Franke T.F. et al. Regulation of neuronal survival by the serine-threonine protein kinase akt. Science. 1997; 275(5300): 661–5. DOI: 10.1126/science. 275. 5300.661.

Apostolatos A., Song S., Acosta S. et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem. 2012; 287(12): 9299–310. DOI: 10.1074/jbc.M111.313080.

Haddad-Tóvolli R., Altirriba J., Obri A. et al. Pro-opiomelanocortin (POMC) neuron translatome signatures underlying obesogenic gestational malprogramming in mice. Mol Metab. 2020; 36: 100963. DOI: 10.1016/j.molmet.2020.02.006.

Melo A.M., Benatti R.O., Ignacio-Souza L.M. et al. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism. 2014; 63(5): 682–92. DOI: 10.1016/j.metabol.2014.02.002.

Wang Z.V., Scherer P.E. Adiponectin, the past two decades. J Mol Cell Biol.2016; 8: 93–100.

Chandran M., Phillips S.A., Ciaraldi T., Henry R.R. Adi ponectin: more than just another fat cell hormone? Diabetes Care. 2003; 26: 2442–50.

Arita Y., Kihara S., Ouchi N. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999; 257: 79–83.

Hu E., Liang .P, Spiegelman B.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. 1996; 271: 10697–703.

Hinkle S.N., Rawal S., Liu D. et al. Maternal adipokines longitudinally measured across pregnancy and their associations with neonatal size, length, and adiposity. Int J Obes (Lond). 2019; 43: 1422–34.

Aye I.L., Powell T.L., Jansson T. Review: Adiponectin — the missing link between maternal adiposity, placental transport and fetal growth? Placenta. 2013; 34: S40–5.

Qiao L., Yoo H.S., Madon A. et al. Adiponectin enhances mouse fetal fat deposition. Diabetes. 2012; 61: 3199–207.

Forhead A.J., Fowden A.L. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol.2009; 587: 1145–52.

Pardo I.M., Geloneze B., Tambascia M.A., Barros-Filho A.A. Hyperadiponectinemia in newborns: relationship with leptin levels and birth weight. Obes Res.2004; 12: 521–4.

Frederiksen L., Nielsen T.L., Wraae K. et al. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab. 2009; 94: 4010–5.

Misra V.K., Straughen J.K., Trudeau S. Maternal serum leptin during pregnancy and infant birth weight: the influence of maternal overweight and obesity. Obes (Silver Spring). 2013; 21(5): 1064–9. DOI: 10.1002/oby.20128.

Patro-Małysza J., Trojnar M., Skórzyńska-Dziduszko K.E. et al. Leptin and ghrelin in excessive gestational weight gain-association between mothers and offspring. Int J Mol Sci. 2019; 20(10): 2398. DOI: 10. 3390/ijms20102398.

Trayhurn P., Beattie J.H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001; 60: 329–39.

Morrison C.D. Leptin resistance and the response to positive energy balance. Physiol Behav. 2008; 94: 660–3.

Tham E., Liu J., Innis S. et al. Acylated ghrelin concentrations are markedly decreased during pregnancy in mothers with and without gestational diabetes: relationship with cholinesterase. Am J Physiol Endocrinol Metab. 2009; 296(5): E1093–100. DOI: 10.1152/ajpendo.90866.2008.

Karakulak M., Saygili U., Temur M. et al. Comparison of umbilical cord ghrelin concentrations in full-term pregnant women with or without gestational diabetes. Endocr Res. 2017; 42(2): 79–85. DOI: 10.1080/07435800.2016.1194855.

Nakahara K., Nakagawa M., Baba Y. et al. Maternal ghrelin plays an important role in rat fetal development during pregnancy. Endocrinology. 2006; 147(3): 1333–42. DOI: 10.1210/en.2005-0708.

Wang Y., Sul H.S. Ectodomain shedding of preadipocyte factor 1 (Pref-1) by tumor necrosis factor alpha converting enzyme (TACE) and inhibition of adipocyte differentiation. Mol Cell Biol. 2006; 26: 5421–35.

Shulman G.I. Cellular mechanisms of insulin resistance. J Clin Invest. 2000; 106: 171–6.

Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004; 350: 1220–34.

Shackleton S., Lloyd D.J., Jackson S.N. et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000; 24: 153–6.

Agarwal A.K., Arioglu E., De Almeida S. et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002; 31: 21–3.

Magre J., Delepine M., Khallouf E. et al. Identification of the gene altered in BerardinelliSeip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001; 28: 365–70.

Barroso I., Gurnell M., Crowley V.E. et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999; 402: 880–3.

Gregoire F.M., Smas C.M., Sul H.S. Understanding adipocyte differentiation. Physiol Rev. 1998; 78: 783–809.

Rosen E.D., Spiegelman B.M. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000; 16: 145 –71.

Smas C.M., Sul H.S. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell. 1993; 73: 725–34.

Bonen A., Parolin M.L., Steinberg G.R. et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. Faseb J. 2004; 18: 1144–6.

Smas C.M., Chen L., Sul H.S. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol. 1997; 17: 977–88.

Kershaw E.E., Flier J.S. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004; 89: 2548–56.

Villena J.A., Kim K.H., Sul H.S. Pref-1 and ADSF/resistin: two secreted factors inhibiting adipose tissue development. Horm Metab Res. 2002; 34: 664–70.

Furigo I.C., Teixeira PDS., de Souza G.O. et al. Growth hormone regulates neuroendocrine responses to weight loss via AgRP neurons. Nat Commun. 2019;10(1): 662. DOI: 10.1038/s41467- 019 - 08607-1.

Furigo I.C., de Souza G.O., Teixeira PDS. et al. Growth hormone enhances the recovery of hypoglycemia. FASEB J. 2019; 33(11): 11909–24. DOI: 10.1096/fj.201901315R.

Donato J., Wasinski F., Furigo I.C. et al. Central regulation of metabolism by growth hormone. Cells; 2021; 10(1): 129. DOI: 10. 3390/cells10 010129.

Teixeira PDS., Couto G.C., Furigo I.C. et al. Central growth hormone action regulates metabolism during pregnancy. Am J Physiol Endocrinol Metab. 2019; 317(5): E925–E40. DOI: 10.1152/ajpendo.00229.2019.

Wasinski F., Furigo I.C., Teixeira PDS. et al. Growth hormone receptor deletion reduces the density of axonal projections from hypothalamic arcuate nucleus neurons. Neuroscience. 2020; 434: 136–47. DOI: 10.1016/j.neuroscience.2020.03.037.

Challier J.C., Basu S., Bintein T. et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008; 29(3): 274–81.

Ramsay J.E., Ferrell W.R., Crawford L. et al. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J Clin Endocrinol Metab. 2002; 87(9): 4231–7.

Петренко Ю.В., Герасимова К.С., Новикова В.П. Биологическая и патофизиологическая значимость адипонектина. Педиатр. 2019; 10(2): 83–7. DOI: 10.17816/PED10283-87. EDN RVWXCN.

Novikova V.P., Ivanov D.O., Petrenko Yu.V. et al. Increased marker of endothelial cell dysfunction sVCAM-1 in umbilical cord blood in neonates born to obese women. Archives of Disease in Childhood. 2019; 104(S3): 117. DOI 10.1136/archdischild-2019-epa.273.

Azizian M., Mahdipour E., Mirhafez S.R. et al. Cytokine profiles in overweight and obese subjects and normal weight individuals matched for age and gender. Ann Clin Biochem. 2016; 53(6): 663–8.

Brunner S., Schmid D., Hüttinger K. et al. Maternal insulin resistance, triglycerides and cord blood insulin in relation to post-natal weight trajectories and body composition in the offspring up to 2 years. Dia bet Med J Br Diabet Assoc. 2013; 30(12): 1500–7.

Regnault N., Botton J., Heude B. et al. Higher Cord C-Peptide Concentrations Are Associated With Slower Growth Rate in the 1st Year of Life in Girls but Not in Boys. Diabetes. 2011; 60(8): 2152–9.

Stang J., Huffman L.G. Position of the Academy of Nutrition and Dietetics: Obesity, Reproduction, and Pregnancy Outcomes. J Acad Nutr Diet. 2016; 116(4): 677–91.

Dubé E., Gravel A., Martin C. et al. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod. 2012; 87(1): 14, 1–11.

Hellmuth C., Lindsay K.L., Uhl O. et al. Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes 2005. 2017; 41(1): 159 – 69.

Briley A.L., Barr S., Badger S. et al. A complex intervention to improve pregnancy outcome in obese women; the UPBEAT randomised controlled trial. BMC Pregnancy Childbirth. 2014; 14: 74.

Herrera E., Ortega-Senovilla H. Implications of lipids in neonatal body weight and fat mass in gestational diabetic mothers and non-diabetic controls. Curr Diabetes Rep. 2018; 18(2): 7. DOI: 10.1007/s11892- 018 - 0978 - 4.

Merzouk H., Meghelli-Bouchenak M., Loukidi B. et al. Impaired serum lipids and lipoproteins in fetal macrosomia related to maternal obesity. Biol Neonate. 2000; 77(1): 17–24. DOI: 10.1159/000014190.

Furse S., Koulman A., Ozanne S.E. et al. Altered lipid metabolism in obese women with gestational diabetes and associations with offspring adiposity. J Clin Endocrinol Metab. 2022; 107(7): e2825–e32. DOI: 10.1210/clinem/dgac206.

Barbour L.A., Farabi S.S., Friedman J.E. et al. Postprandial triglycerides predict newborn fat more strongly than glucose in women with obesity in early pregnancy. Obes (Silver Spring). 2018; 26(8): 1347–56. DOI: 10.1002/oby.22246.

Pimentel G.D., Lira F.S., Rosa J.C. et al. Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFκBp65 signaling in adult offspring. J Nutr Biochem. 2012; 23(3): 265–71. DOI: 10.1016/j.jnutbio.2010.12.003.

Rother E., Kuschewski R., Alcazar M.A. et al. Hypothalamic JNK1 and IKKβ activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology. 2012; 153(2): 770–81. DOI: 10.1210/en.2011-1589.

Zhang X., Zhang G., Zhang H. et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008; 135(1): 61–73. DOI: 10.1016/j.cell.2008.07.043.

Sadagurski M., Debarba L.K., Werneck-de-Castro J.P. et al. Sexual dimorphism in hypothalamic inflammation in the offspring of dams exposed to a diet rich in high fat and branched-chain amino acids. Am J Physiol Endocrinol Metab. 2019; 317(3): E526 –E34. DOI: 10.1152/ajpendo.00183. 2019.

Melo A.M., Benatti R.O., Ignacio-Souza L.M. et al. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Me-tabolism. 2014; 63(5): 682–92. DOI: 10.1016/j.metabol.2014.02.002.

Park S., Jang A., Bouret S.G. Maternal obesity-induced endoplasmic reticulum stress causes metabolic alterations and abnormal hypothalamic development in the offspring. PloS Biol. 2020; 18(3): e3000296. DOI: 10.1371/journal.pbio.3000296.

Barnes S.K., Ozanne S.E. Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol. 2011; 106(1): 323–36. DOI: 10.1016/j.pbiomolbio.2010.12.005.

Drake A.J., Reynolds R.M. Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction.2010; 140(3): 387–98. DOI: 10.1530/REP-10 - 0077.

Gaillard R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur J Epidemiol.2015; 30(11): 1141–52. DOI: 10.1007/s10654-015-0085-7.

Nicholas L.M., Morrison J.L., Rattanatray L. et al. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond). 2016; 40(2): 229–38.

Poston L. Developmental programming and dia betes — the human experience and insight from animal models. Best Pract Res Clin Endocrinol Metab.2010; 24(4): 541–52. DOI: 10.1016/j.beem.2010.05.007.

Edlow A.G., Glass R.M., Smith C.J. et al. Placental Macrophages: A Window Into Fetal Microglial Function in Maternal Obesity. Int. J. Dev. Neurosci. 2019; 77, 60–8. DOI: 10.1016/j.ijdevneu.2018.11.004.

Хавкин А.И., Айрумов В.А., Шведкина Н.О., Новикова В.П. Биологическая роль и клиническое значение нейропептидов в педиатрии: пептид YY и грелин. Вопросы практической педиатрии. 2020; 15(5): 87–92. DOI: 10.20953/1817-7646-2020-5-87-92.

Symonds M.E., Sebert S.P., Hyatt M.A., Budge H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol. 2009; 5(11): 604–10. DOI: 10.1038/nrendo.2009.195.

Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. Cell. 2001; 104(4): 531–43. DOI: 10.1016/S0092-8674(01)00240-9.

Hassink S.G., Sheslow D.V., de Lancey E. et al. Serum leptin in children with obesity: relationship to gender and development. Pediatrics.1996; 98(2 Pt 1): 201–3.

Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. Cell.2001; 104(4): 531–43. DOI: 10.1016/S0092-8674(01)00240-9.

Morton G.J., Schwartz M.W. Leptin and the central nervous system control of glucose metabolism. Physiol Rev.2011; 91(2): 389–411. DOI: 10.1152/physrev.00007.2010.

Hoggard N., Hunter L., Duncan J.S. et al. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc Natl Acad Sci U S A.1997; 94(20): 11073–8. DOI: 10.1073/pnas.94.20.11073.

Shekhawat P.S., Garland J.S., Shivpuri C. et al. Neonatal cord blood leptin: its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr Res.1998; 43(3): 338–43. DOI: 10.1203/00006450-199803000-00005.

Kamimae-Lanning A.N., Krasnow S.M., Goloviznina N.A. et al. Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol. Metab. 2015; 4(1): 25–38. DOI: 10.1016/j.molmet. 2014.11.001.

Boeke C.E., Mantzoros C.S., Hughes M.D. et al. Differential associations of leptin with adiposity across early childhood. Obesity (Silver Spring).2013; 21(7): 1430–7. DOI: 10.1002/oby.20314.

Mantzoros C.S., Rifas-Shiman S.L., Williams C.J. et al. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: a prospective cohort study. Pediatrics.2009; 123(2): 682–9. DOI: 10.1542/peds. 2008 - 0343.

Ong K.K., Ahmed M.L., SherriffA. et al. Cord blood leptin is associated with size at birth and predicts infancy weight gain in humans. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J Clin Endocrinol Metab.1999; 84(3): 1145–8. DOI: 10.1210/jcem.84.3.5657.

Zuo H.J., Xie Z.M., Zhang W.W. et al. Gut bacteria alteration in obese people and its relationship with gene polymorphism. World J. Gastroenterol. 2011; 17: 1076–81. DOI: 10.3748/wjg.v17.i8.1076.

Castro-Rodriguez J.A., Forno E., Casanello P. et al. Leptin in Cord Blood Associates with Asthma Risk at Age 3 in the Offspring of Women with Gestational Obesity. Ann. Am. Thorac. Soc.2020; 17 (12): 1583–9. DOI: 10.1513/AnnalsATS. 202001- 080OC .

Chang G-Q., Gaysinskaya V., Karatayev O. et al. Maternal High-Fat Diet and Fetal Programming: Increased Proliferation of Hypothalamic Peptide-Producing Neurons That Increase Risk for Overeating and Obesity. J Neurosci. 2008; 28: 12107–19.

Nguyen L.T., Saad S., Tan Y. et al. Maternal high-fat diet induces metabolic stress response disorders in offspring hypothalamus. J Mol Endocrinol. 2017; 59: 81–92.

Kirk S.L., Samuelsson A-M., Argenton M. et al. Maternal Obesity Induced by Diet in Rats Permanently Influences Central Processes Regulating Food Intake in Offspring. PLOS ONE. 2009; 4: e5870.

Glavas M.M., Kirigiti M.A., Xiao X.Q. et al. Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology.2010 ; 151: 159 8 –1610.

Long N.M., Ford S.P., Nathanielsz P.W. Maternal obesity eliminates the neonatal lamb plasma leptin peak. J Physiol.2011; 589: 1455–62.

Macumber I., Schwartz S., Leca N. Maternal obesity is associated with congenital anomalies of the kidney and urinary tract in offspring. Pediatr Nephrol.2017; 32: 635–42.

Hsu C.W., Yamamoto K.T., Henry R.K. et al. Prenatal risk factors for childhood CKD. J Am Soc Nephrol JASN.2014; 25: 2105–11.

Lee Y.Q., Lumbers E.R., Oldmeadow C. et al. The relationship between maternal adiposity during pregnancy and fetal kidney development and kidney function in infants: the Gomeroi gaaynggal study. Physiol Rep.2019; 7: e14227.

Luyckx V.A., Brenner B.M. The clinical importance of nephron mass. J Am Soc Nephrol JASN.2010; 21: 898–910.

Brenner B.M., Chertow G.M. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis Off J Natl Kidney Found. 1994; 23: 171–5.

Zhou P., Guan H., Guo Y. et al. Maternal High-Fat Diet Programs Renal Peroxisomes and Activates NLRP3 Inflammasome-Mediated Pyroptosis in the Rat Fetus. J Inflamm Res.2021; 14: 5095–5110.

Shamseldeen A.M., Ali Eshra M., Ahmed Rashed L. et al. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings. Arch Physiol Biochem. 2019; 125: 367–77.

Glastras S.J., Chen H., McGrath R.T. et al. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity. Sci Rep.2016; 6: 23525.

Glastras S.J., Tsang M. Teh R. et al. Maternal Obesity Promotes Diabetic Nephropathy in Rodent Offspring. Sci Rep. 2016; 6: 27769.

Yamada-Obara N., Yamagishi S., Taguchi K. et al. Maternal exposure to high-fat and high-fructose diet evokes hypoadiponectinemia and kidney injury in rat offspring. Clin Exp Nephrol. 2016; 20: 853–61.

Ley R.E., Bäckhed F., Turnbaugh P. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005; 102: 11070 –5. DOI: 10.1073/pnas.0504978102.

Nguyen L.T., Mak C.H., Chen H. et al. SIRT1 Attenuates Kidney Disorders in Male Offspring Due to Maternal High-Fat Diet. Nutrients.2019; 11: 146.

Jackson C.M., Alexander B.T., Roach L. et al. Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am J Physiol-Ren Physiol.2012; 302: F774–F783.

Flynn E.R., Alexander B.T., Lee J. et al. High-fat/fructose feeding during prenatal and postnatal development in female rats increases susceptibility to renal and metabolic injury later in life. Am J Phy siolRegul Integr Comp Physiol. 2013; 304: R278–R285.

Preveden T., Scarpellini E., Milić N. et al. Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev. Gastroenterol. Hepatol.2017; 11: 813 –9. D O I : 10.10 8 0/17474124. 2017.13 436 63.

Moore W.E., Holdeman L.V. Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Appl. Microbiol.1974; 27: 961–79.

Gill S.R., Pop M., Deboy R.T. et al. Metagenomic analysis of the human distal gut microbiome. Science.2006; 312: 1355–9. DOI: 10.1126/science.1124234.

Armougom F., Henry M., Vialettes B. et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE. 2009; 4: e7125. DOI: 10.1371/journal.pone.0007125.

Nash A.K., Auchtung T.A., Wong M.C. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome.2017; 5: 153. DOI: 10.1186/s40168-017-0373-4.

Turnbaugh P.J., Gordon J.I. The core gut microbiome, energy balance and obesity. J. Physiol.2009; 587: 4153–8. DOI: 10.1113/jphysiol.2009.174136.

De Faria Ghetti F., Oliveira D.G., de Oliveira J.M. et al. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur. J. Nutr.2018; 57: 861–76. DOI: 10.1007/s00394-017-1524 -x.

Ottman N., Smidt H., de Vos W.M., Belzer C. The function of our microbiota: Who is out there and what do they do? Front. Cell. Infect. Microbiol.2012; 2: 104. DOI: 10.3389/fcimb.2012.00104.

Sittipo P., Lobionda S., Lee Y.K., Maynard C.L. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol.2018; 56: 154–62. DOI: 10.1007/s12275- 018 -7548 -y.

Koleva P.T., Kim J.S., Scott J.A. and Kozyrskyj A.L. Microbial programming of health and disease starts during fetal life. Birth Defects Res. C Embryo Today. 2015; 105: 265–77. DOI: 10.1002/bdrc.21117.

Escherich T. The intestinal bacteria of the neonate and breast-fed infant. 1885. Rev. Infect. Dis. 1989; 11: 352–6. DOI: 10.1093/clinids/11.2.352.

Küstner O. Beitrag zur lehre von der puerperalen infection der neugeborenen. Archiv. für Gynäkologie. 1877; 11: 256–63. DOI: 10.1007/BF01845161.

Perez-Munoz M.E., Arrieta M.C., Ramer-Tait A.E. and Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome. 2017; 5: 48. DOI: 10.1186/s40168-017- 0268 - 4.

Collado M.C., Rautava S., Aakko J. et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016; 6: 23129. DOI: 10.1038/srep23129.

Wassenaar T.M. and Panigrahi P. Is a foetus developing in a sterile environment? Lett. Appl. Microbiol.2 014 ; 5 9 : 5 7 2 – 9 . D O I : 10 .1111/ l a m .12 3 3 4 .

Jimenez E., Marin M.L., Martin R. et al. Is meconium from healthy newborns actually sterile? Res. Microbiol. 2008; 159: 187–93. DOI: 10.1016/j.resmic.2007.12.007.

Hu J., Nomura Y., Bashir A. et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One. 2013; 8: e78257. DOI: 10.1371/journal.pone.0078257.

Zheng J., Xiao X.H., Zhang Q. et al. Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget. 2017; 8: 82314–25.

Aagaard K., Ma J., Antony K.M. et al. The placenta harbors a unique microbiome. Sci. Transl. Med.2014; 6: 237ra265.

Gomez-Arango L.F., Barrett H.L., McIntyre H.D. et al. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci. Rep.2017; 7: 2860. DOI: 10.1038/s41598-017-03066-4.

Mackie R.I., Sghir A., Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. In American Journal of Clinical Nutrition. 1999; 69(5): 1035S-1045S. June 1999 with 629 Reads.

Hesla H.M., Stenius F., Jäderlund L. et al. Impact of lifestyle on the gut microbiota of healthy infants and their mothers–the ALADDIN birth cohort. Microbiol Ecol. 2014; 90 (3): 791–801.

Юдина Ю.В., Аминова А.И., Продеус А.П. и др. Особенности микробиоты кишечника у детей в возрасте 1–5 лет с атопическим дерматитом. Вопросы детской диетологии. 2021; 19(2): 5–13.

Jakobsson H.E., Abrahamsson T.R., Jenmalm M.C. et al. Decreased gut microbiota diversity, delayed bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014; 63(4): 559–66.

MacIntyre D.A., Chandiramani M., Lee Y.S. et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015; 5: 8988.

Jost T., Lacroix C., Braegger C., Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. 2013; 110(7): 1253–62.

Soto A., Martín V., Jiménez E. et al. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr. 2014; 59(1): 78–88.

Zivkovic A.M., German J.B., Lebrilla C.B., Mills D.A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA. 2011; 108(1): 4653–61.

Garrido D., Ruiz-Moyano S., Mills D.A. Release and utilization of N-acetyl-D -glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. Infantis Anaerobe. 2012; 18(4): 430–35.

Penders J., Thijs C., Vink C. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118(2): 511–21.

Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterology. 2016; 16: 86.

Panda S., El khader I., Casellas F. et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014; 9(4): e95476.

Sonnenburg J.L., Sonnenburg E.D. Vulnerability of the industrialized microbiota. Science. 2019; 366: eaaw9255.

Stark C.M., Susi A., Emerick J., Nylund C.M. Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut. 2019; 68: 62–9.

Kronman M.P., Zaoutis T.E., Haynes K. et al. Antibiotic exposure and iBD development among children: A population-based cohort study. Pediatrics 2012; 130: e794–e803.

Langdon A., Crook N., Dantas G. The effects of antibiotics on the microbiome through out development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8(1): 39.

Turnbaugh P.J., Ley R.E., Mahowald M.A. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444: 1027–31. DOI: 10.1038/nature05414.

Schwiertz A., Taras D., Schäfer K. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010; 18: 190–5. DOI: 10.1038/oby.2009.167.

Turnbaugh P.J., Quince C., Faith J.J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl. Acad. Sci. USA. 2010; 107: 7503–8. DOI: 10.1073/pnas.1002355107.

Waldram A., Holmes E., Wang Y. et al. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J. Proteome Res.2009; 8: 2361–75. DOI: 10.1021/pr8009885.

Zhang H., DiBaise J.K., Zuccolo A. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA.2009; 106: 2365–70. DOI: 10.1073/pnas.0812600106.

Cuevas-Sierra A., Ramos-Lopez O., Riezu-Boj J.I. et al. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019; 10: S17–S30. DOI: 10.1093/advances/nmy078.

Hiippala K., Jouhten H., Ronkainen A. et al. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients.2018; 10: 988. DOI: 10.3390/nu10080988.

Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56: 1761–72. DOI: 10.2337/db06-1491.

Xu P., Li M., Zhang J., Zhang T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol.2012; 12: 283. DOI: 10.1186/1471-2180 -12-283.

Munukka E., Wiklund P., Pekkala S. et al. Women with and without metabolic disorder differ in their gut microbiota composition. Obesity.2012; 20: 1082–7. DOI: 10.1038/oby.2012.8.

Kravtsova K., Prokopieva N.E., Petrenko Yu.V. et al. Gut microbiota of children born to obese mothers. World of Microbiome, Vienna, 28–30 апреля 2022 года. Vienna: Kenes group. 2022.

Gagliardi A., Totino V., Cacciotti F. et al. Rebuilding the Gut Microbiota Ecosystem. Int. J. Environ. Res. Public Health.2018; 15: 1679. DOI: 10.3390/ijerph15081679.

Zhao Y., He X., Shi X. et al. Association between serum amyloid A and obesity: A meta-analysis and systematic review. Inflamm. Res.2010; 59: 323–34. DOI: 10.1007/s00011-010-0163-y.

Payne A.N., Chassard C., Zimmermann M. et al. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr. Diabetes.2011; 1: e12. DOI: 10.1038/nutd.2011.8.

Alex S., Lichtenstein L., Dijk W. et al. ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochem. Cell Biol.2014; 141: 383 –91. DOI: 10.1007/s00418-013-1157-y.

Sanmiguel C., Gupta A., Mayer E.A. Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Curr. Obes. Rep. 2015; 4: 250–61. DOI: 10.1007/s13679-015-0152-0.

Stephens R.W., Arhire L., Covasa M. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity.2018; 26: 801–9. DOI: 10.1002/oby.22179.

Bäckhed F., Ding H., Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004; 101: 15718–23. DOI: 10.1073/pnas.0407076101.

Scarpellini E., Cazzato A., Lauritano C. et al. Probiotics: Which and when? Dig. Dis.2008; 26: 175–82. DOI: 10.1159/000116776.

Смирнова Н.Н., Новикова В.П., Куприенко Н.Б. и др. Влияние микробиома репродуктивного тракта женщины на внутриутробное и постнатальное развитие ребенка. Вопросы гинекологии, акушерства и перинатологии. 2022; 21(6): 107–13. DOI: 10. 20953/1726 -1678 -2022- 6 -107-112. EDN LCUFFM.

Duncan S.H., Belenguer A., Holtrop G. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol.2007; 73: 1073–8. DOI: 10.1128/AEM.02340-06.

Murphy E.F., Cotter P.D., Healy S. et al. Composition and energy harvesting capacity of the gut micro biota: Relationship to diet, obesity and time in mouse models. Gut.2010; 59: 1635–42. DOI: 10.1136/gut. 2010. 215665. 232. Li J.V., Ashrafian H., Bueter M. et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut.2011; 60: 1214–23. DOI: 10.1136/gut. 2010. 234708.

Liou A.P., Paziuk M., Luevano J.M., Jr. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med.2013; 5: 178ra41. DOI: 10.1126/scitranslmed.3005687.

Hiippala K., Jouhten H., Ronkainen A. et al. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients.2018; 10: 988. DOI: 10.3390/nu10080988.

Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes.2007; 56: 1761–72. DOI: 10.2337/db06-1491.

Lee S., Sung J., Lee J., Ko G. Comparison of the gut microbiotas of healthy adult twins living in South Korea and the United States. Appl. Environ. Microbiol.2011; 77: 7433–7. DOI: 10.1128/AEM.05490-11.

Luoto R., Kalliomäki M., Laitinen K. et al. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J. Pediatr. Gastroenterol. Nutr.2011; 52: 90–5. DOI: 10.1097/MPG.0b013e3181f3457f.

Payne A.N., Chassard C., Banz Y., Lacroix C. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol. Ecol.2012; 80: 608–2 3 . D O I : 10 .1111/ j .15 74 - 6 9 41. 2 012 . 013 3 0 . x .

Gohir W., Whelan F.J., Surette M.G. et al. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes. 2015; 6: 310–20. DOI: 10.1080/19490976.2015.1086056.

Collado M.C., Isolauri E., Laitinen K. and Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 2008; 88: 894–9.

Qin J., Li R., Raes J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464: 59–65. DOI: 10.1038/nature08821.

Dietert R.R. and Dietert J.M. The microbiome and sustainable healthcare. Healthcare (Basel). 2015; 3: 100 –29. DOI: 10. 3390/healthcare3010100.

Zacarías M.F., Collado M.C., Gómez-Gallego C. et al. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS One. 2018; 13(7): e0200305. DOI: 10.1371/journal.pone.0200305. PMID: 30005082; PMCID: PMC6044541.

Santacruz A., Collado M.C., Garcia-Valdes L. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr.2010; 104: 83–92. DOI: 10.1017/S0007114510000176.

Soderborg T.K., Clark S.E., Mulligan C.E. et al. The gut microbiota in infants of obese mothers increases inflammation and susceptibility. Nat. Commun.2018; 9(1). DOI: 10.1038/s41467-018-06929-0.

Ferrer M., Ruiz A., Lanza F. et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ. Microbiol.2013; 15: 211 –2 6 . D O I : 10 .1111/ j .14 6 2 -2 9 2 0 . 2 012 . 0 2 8 4 5 . x .

Bervoets L., Van Hoorenbeeck K., Kortleven I. et al. Differences in gut microbiota composition between obese and lean children: A cross-sectional study. Gut Pathog.2013; 5: 10. DOI: 10.1186/1757-4749 -5-10.

Luoto R., Kalliomäki M., Laitinen K. et al. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J. Pediatr. Gastroenterol. Nutr.2011; 52: 90–5. DOI: 10.1097/MPG.0b013e3181f3457f.

Clarke S.F., Murphy E.F., O’Sullivan O. et al. Targeting the microbiota to address diet-induced obesity: A time dependent challenge. PLoS One. 2013; 8: e65790 DOI: 10.1371/journal.pone.0065790.

Прокопьева Н.Э., Петренко Ю.В., Иванов Д.О. и др. Формирование полостной микробиоты кишечника у детей первого года жизни, рожденных от матерей с ожирением. Актуальные проблемы абдоминальной патологии у детей: Материалы Юбилейного XXX Конгресса детских гастроэнтерологов России и стран СНГ, Москва, 14–16 марта 2023 года. М.: Медпрактика-М; 2023: 41–3.

Martinez I., Lattimer J.M., Hubach K.L. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. Isme J. 2013; 7: 269–80. DOI: 10.1038/ismej.2012.104.

Vael C., Verhulst S.L., Nelen V. et al. Intestinal microbiota and body mass index during the first three years of life: An observational study. Gut Pathog. 2011; 3: 8. DOI: 10.1186/1757-4749-3-8.

Nadal I., Santacruz A., Marcos A. et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int. J. Obes. 2009; 33: 758–67. DOI: 10.1038/ijo.2008.260.

REFERENCES

World Health Organization (WHO). Obesity and overweight. January 2015. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 2 April 2016.

Hruby A., Hu F.B. The epidemiology of obesity: a big picture. Pharmacoeconomics.2015; 33: 673–89.

Poston L., Caleyachetty R., Cnattingius S. et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol.2016; 4(12): 1025–36. DOI: 10.1016/S2213-8587(16)30217-0.

Hales C.M., Carroll M.D., Fryar C.D., Ogden C.L. Prevalence of Obesity and Severe Obesity Among Adults: United State-2018. NCHS Data Brief. 2020; 360: 1–8.

Gritsinskaya V.L., Novikova V.P., Khavkin A.I. K voprosu ob epidemiologii ozhireniya u detey i podrostkov (sistematicheskiy obzor i meta-analiz nauchnykh publikatsiy za 15-letniy period). [On the issue of the epidemiology of obesity in children and adolescents (a systematic review and meta-analysis of scientific publications over a 15-year period)]. Voprosy prakticheskoy pediatrii. 2022; 17(2): 126–35. DOI: 10.20953/1817-7646-2022-2-126-135. (in Russian).

Gaillard R., Steegers EAP., Franco O.H. et al. Maternal weight gain in different periods of pregnancy and childhood cardio-metabolic outcomes. The Generation R Study. International Journal of Obesity. 2015; 39: 677–85.

Hinkle S.N., Sharma A.J., Swan D.W. et al. Excess Gestational Weight Gain Is Associated with Child Adiposity among Mothers with Normal and Overweight Prepregnancy Weight Status. The Journal of Nutrition. 2012; 142: 1851–8.

Hochner H., Friedlander Y., Calderon-Margalit R. et al. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-up Study. Circulation.2012; 12 5: 13 81– 9.

Oken E., Rifas-Shiman S.L., Field A.E. et al. Maternal Gestational Weight Gain and Offspring Weight in Adolescence. 2008; 112: 8.

Kaar J.L., Crume T., Brinton J.T. et al. Maternal Obesity, Gestational Weight Gain, and Offspring Adiposity: The Exploring Perinatal Outcomes among Children Study. The Journal of Pediatrics. 2014; 165: 509–15.

Josey M.J., McCullough L.E., Hoyo C., Williams-DeVane C. Overall gestational weight gain mediates the relationship between maternal and child obesity. BMC public health. 2019; 19: 1062.

Arrowsmith S., Wray S., Quenby S. Maternal obesity and labour complications following induction of labour in prolonged pregnancy. BJOG. 2011; 118(5): 578–88.

Yogev Y., Catalano P.M. Pregnancy and obesity. Obstet. Gynecol. Clin. North Am. 2009; 36(2): 285–300.

Bogaerts A., Witters I., Van den Bergh B.R. et al. Obesity in pregnancy: altered onset and progression of labour. Midwifery. 2013; 29(12): 1303–13.

HAPO Study Cooperative Research Group, Metzger B.E., Lowe L.P., Dyer A.R., Trimble E.R., Chaovarindr U. et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008; 358(19): 19 91–20 02

Wu D., Hu D., Chen H. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 2018; 559: 637–41.

Komshilova K.A., Dzgoeva F.Kh. Beremennost' i ozhireniye [Pregnancy and obesity]. Ozhireniye i metabolizm. 2009; 4: 9–13.

Chukhareva N.A., Runikhina N.K., Dudinskaya Ye.N. Osobennosti techeniya beremennosti u zhenshchin s ozhireniyem. [Features of the course of pregnancy in women with obesity]. Akusherstvo i ginekologiya. 2014; 2: 9–13. (in Russian).

Lazo-de-la-Vega-Monroy M-L., Mata-Tapia K-A., Garcia-Santillan J-A. et al. Association of placental nutrient sensing pathways with birth weight. Reproduction.2020; 160: 455–68.

Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb. Perspect. Biol. 10(10), 1–17. DOI: 10.1101/cshperspec t. a030338.

Zhu M.J., Du M., Nathanielsz P.W., Ford S.P. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010; 31(5): 387–91. DOI: 10.1016/j.placenta.2010.02.002.

Romagnani S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000; 85(1): 9–18. DOI: 10.1016/S1081-1206(10)62426 -X .

Liang T., Jinglong X., Shusheng D., Aiyou W. Maternal obesity stimulates lipotoxicity and up-regulates inflammatory signaling pathways in the full-term swine placenta. Anim Sci J.2018; 89: 1310–22.

Brass E., Hanson E., O’Tierney-Ginn P.F. Placental oleic acid uptake is lower in male offspring of obese women. Placenta. 2013; 34: 503–9.

Jansson N., Rosario F.J., Gaccioli F. et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013; 98: 105–13.

Flenady V., Koopmans L., Middleton P. et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet Lond Engl. 2011; 377(9774): 1331–40.

Aune D., Saugstad O.D., Henriksen T., Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA. 2014; 311: 1536–46.

Ehrenberg H.M., Mercer B.M., Catalano P.M. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 2004; 191: 964–8.

Sewell M.F., Huston-Presley L., Super D.M. et al. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol.2006; 195: 1100–3.

Whitelaw A.G. Influence of maternal obesity on subcutaneous fat in the newborn. Br Med J.

; 1: 985–6.

Andres A., Hull H.R., Shankar K. et al. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity. Obes Silver Spring Md.2015; 23: 1252–8.

Jolly M.C., Sebire N.J., Harris J.P. et al. Risk factors for macrosomia and its clinical consequences: a study of 350, 311 pregnancies. Eur J Obstet Gynecol Reprod Biol. 2003; 111(1): 9–14.

Nesbitt T.S., Gilbert W.M., Herrchen B. Shoulder dystocia and associated risk factors with macrosomic infants born in California. Am J Obstet Gynecol. 1998; 179(2): 476–80.

Turner D., Monthé-Drèze C., Cherkerzian S. et al. Maternal obesity and cesarean section delivery: additional risk factors for neonatal hypoglycemia? J Peri natol Off J Calif Perinat Assoc. 2019; 39(8):1057– 6 4.

Stanley C.A., Rozance P.J., Thornton P.S. et al. Re-evaluating “transitional neonatal hypoglycemia”: mechanism and implications for management. J Pediatr. 2015; 166(6): 1520–5.e1.

Gimeno R.E., Klaman L.D. Adipose tissue as an active endocrine organ: recent advances. 2005; 5: 122–8.

Hutley L., Prins J.B. Fat as an endocrine organ: relationship to the metabolic syndrome. 2005; 330: 280–9.

Kahn B.B., Flier J.S. Obesity and insulin resistance. 2000; 106: 473–81.

Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. 2006; 444: 840–6.

Matsuzawa Y., Funahashi T., Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. 1999; 892: 146–54.

Montague C.T., O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. 2000; 49: 883–8.

Ronti T., Lupattelli G., Mannarino E. The endocrine function of adipose tissue: an update. 2006; 64: 355– 65.

Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. 2001; 104: 531–43.

Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. 2005; 184: 285–93.

Catalano P.M., Hoegh M., Minium J. et al. Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. 2006; 49: 1677–85.

Farvid M.S., Ng T.W., Chan D.C. et al. Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia. 2005; 7: 406–13.

Gable D.R., Hurel S.J., Humphries S.E. Adiponectin and its gene variants as risk factors for insulin resistance, the metabolic syndrome and cardiovascular disease. 2006; 188: 231–44.

Kirwan J.P., Hauguel-De M.S., Lepercq J. et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. 2002; 51: 2207–13.

Lopez-Bermejo A., Fernandez-Real J.M., Garrido E. et al. Maternal soluble tumour necrosis factor receptor type 2 (sTNFR2) and adiponectin are both related to blood pressure during gestation and infant’s birthweight. 2004; 61: 544–52.

Matsuzawa Y. The metabolic syndrome and adipocytokines. 2006; 580: 2917–21.

McLachlan K.A., O’Neal D., Jenkins A., Alford F.P. Do adiponectin, TNFalpha, leptin and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes Metab Res Rev. 2006; 22: 131–8.

Ouchi N., Kihara S., Arita Y. et al. Adiponectin, an adi pocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. 2000; 102: 1296–1301.

Retnakaran R., Hanley A.J., Raif N. et al. Reduced adi ponectin concentration in women with gestational diabetes: a potential factor in progression to type 2 diabetes. 2004; 27: 799–800.

Silha J.V., Krsek M., Skrha J.V. et al. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. 2003; 149: 331–5.

Steppan C.M., Lazar M.A. Resistin and obesity-associated insulin resistance. 2002; 13: 18–23.

Tilg H., Moschen .AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. 2006; 6: 772–83.

Unger R.H. Hyperleptinemia: protecting the heart from lipid overload. 2005; 45: 1031–4.

Smirnova N.N., Kupriyenko N.B., Petrenko Yu.V., Novikova V.P. Materinskoye ozhireniye i sistema “mat’-platsenta-plod”: dokazannyye mekhanizmy vliyaniya. [Maternal obesity and the “mother-placenta-fetus” system: proven mechanisms of influence]. Children’s Medicine of the North-West. 2021; 9(3): 31–9. (in Russian).

Yokota T., Oritani K., Takahashi I. et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. 2000; 96: 1723–32.

Harmon K.A., Gerard L., Jensen D.R. et al. Continuous glucose profiles in obese and normal-weight pregnant women on a controlled diet: metabolic determinants of fetal growth. Diabetes Care. 2011; 34(10): 2198–204. DOI: 10.2337/dc11-0723.

Smirnova N.N., Khavkin A.I., Novikova V.P. Sostav grudnogo moloka pri ozhirenii materi: vliyaniye na razvitiye rebenka. [The composition of breast milk in obese mothers: the impact on the development of the child]. Voprosy prakticheskoy pediatrii. 2022; 17(1): 167–76. DOI: 10. 20953/1817-7646 -2022-1-167-176. (in Russian).

Tsepilova M.O., Polyakova K.D. Vliyaniye aktivnykh metabolitov grudnogo moloka i ikh proizvodnykh na organizm novorozhdonnogo. [Influence of active metabolites of breast milk and their derivatives on the body of a newborn]. Proba pera: Materialy mezhregional’noy nauchnoy konferentsii molodykh uchenykh “VI Malyye Aprel’skiye chteniya pamyati professora M.V. Pikkel’”, Arkhangel’sk, 01 aprelya 2023 goda. Vypusk 6. Arkhangel’sk: Severnyy gosudarstvennyy meditsinskiy universitet; 2023. (in Russian).

Smirnova N.N., Khavkin A.I., Kupriyenko N.B., Novikova V.P. Bakterii i virusy grudnogo moloka. [Bacteria and viruses in breast milk]. Voprosy detskoy diyetologii. 2022; 20(2): 74–82. DOI: 10.20953/1727-5784-2022-2-74-82. EDN BBIKOO. (in Russian)

Metzger B.E., Lowe L.P., Dyer A.R. et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J M e d . 20 0 8; 358(19): 19 91–20 02 . D O I: 10.1056/ N E J -Moa0707943.

Xiang A.H., Peters R.K., Trigo E. et al. Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes. Diabetes. 1999; 48(4): 848–54. DOI: 10.2337/diabetes.48.4.848.

Friedman J.E., Ishizuka T., Shao J. et al. Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes. 1999; 48(9): 1807–14. DOI: 10.2337/diabetes.48.9.1807.

Catalano P.M., Ehrenberg H.M. The short- and longterm implications of maternal obesity on the mother and her offspring. BJOG. 2006; 113(10): 1126–3 3 . D O I : 10 .1111/ j .147 1 - 0 5 2 8 . 2 0 0 6 . 0 0 9 8 9 . x .

Catalano P.M., Presley L., Minium J., Hauguel-de Mouzon S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009; 32(6): 1076 – 80. DOI: 10. 2337/dc08 -2077.

Toran-Allerand C.D., Ellis L., Pfenninger K.H. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? Brain Res. 1988; 469(1-2): 87–100. DOI: 10.1016/0165-3806(88)90172-1.

Recio-Pinto E., Ishii D.N. Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 1984; 302(2): 323–34. DOI: 10.1016/0006-8993(84)90246-4.

Lázár B.A., Jancsó G., Pálvölgyi L. et al. Insulin confers differing effects on neurite outgrowth

in sepa rate populations of cultured dorsal root ganglion neurons: The role of the insulin receptor. Front Neurosci. 2018; 12: 732. DOI: 10.3389/fnins.2018.00732.

Song J., Wu L., Chen Z. et al. Axons guided by insulin receptor in drosophila visual system. Science. 2003; 300(5618): 502–5. DOI: 10.1126/science.1081203.

Fex Svenningsen A., Kanje M. Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H]thymidine incorporation through their respective receptors. Glia. 1996; 18(1): 68–72. DOI: 10.1002/(SICI)1098-1136(199609)18:1.

Dudek H., Datta S.R., Franke T.F. et al. Regulation of neuronal survival by the serine-threonine protein kinase akt. Science. 1997; 275(5300): 661–5. DOI: 10.1126/science. 275. 5300.661.

Apostolatos A., Song S., Acosta S. et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem. 2012; 287(12): 9299–310. DOI: 10.1074/jbc.M111.313080.

Haddad-Tóvolli R., Altirriba J., Obri A. et al. Pro-opiomelanocortin (POMC) neuron translatome signatures underlying obesogenic gestational malprogramming in mice. Mol Metab. 2020; 36: 100963. DOI: 10.1016/j.molmet.2020.02.006.

Melo A.M., Benatti R.O., Ignacio

Опубликован
2023-11-10
Как цитировать
Иванов, Д., Прокопьева, Н., & Петренко, Ю. (2023). ПРОГНОСТИЧЕСКАЯ РОЛЬ ОЖИРЕНИЯ ДЛЯ ЗДОРОВЬЯ МАТЕРИ И РЕБЕНКА В ПЕРВЫЙ ГОД ЖИЗНИ. Детская медицина Северо-Запада, 11(3), 5-35. https://doi.org/10.56871/CmN-W.2023.40.28.001
Раздел
Статьи