ПРОБИОТИЧЕСКИЕ СВОЙСТВА ШТАММОВ LACTOBACILLUS REUTERI (L. REUTERI)

  • В.П. Новикова Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Д.М. Магомедова Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
Ключевые слова: пробиотик, L. reuteri, Limosilactobacillus reuteri, младенческие колики

Аннотация

Статус «пробиотик» присваивается тем микроорганизмам, которые считаются безопасными и соответствуют определенным критериям. Lactobacillus reuteri DSM 17938 (L. reuteri) — хорошо изученная бактерия, способная колонизировать у людей различные участки тела. Штамм, который используется сегодня, L. reuteri DSM 17938, недавно переименованный в Limosilactobacillus reuteri (L. reuteri), является пробиотиком, хорошо идентифицированным по его благотворному влиянию на некоторые желудочно-кишечные заболевания. Пробиотический эффект L. reuteri обусловлен целым комплексом особенных свойств. L. reuteri способен влиять на биоразнообразие, состав и метаболическую функцию микробиоты кишечника, полости рта и влагалища. Эти эффекты в значительной степени штаммоспецифичны. Основной терапевтической мишенью воздействия L. reuteri являются младенческие колики. У младенцев, помимо купирования колик и модуляции кишечной микробиоты, L. reuteri способны усиливать барьерную функцию слизистой оболочки, которая необходима для блокирования проникновения внешних антигенов и токсинов. Литературные данные свидетельствуют об эффективности L. reuteri при острой водянистой диарее, против H. pylori и при других заболеваниях: атопическом дерматите, ожирении, при кариесе, расстройствах аутистического спектра, аутоиммунных заболеваниях, в том числе воспалительных заболеваниях кишечника и системной красной волчанке и др. Безопасность и переносимость L. reuteri доказана многочисленными клиническими исследованиями. Существует несколько штаммов L. reuteri с различным происхождением, и многие из пробиотических функций L. reuteri зависят от штамма. И поэтому в будущем, возможно, может быть выгодно комбинировать различные штаммы L. reuteri, чтобы максимизировать их полезные эффекты.

Литература

Walter J., Britton R.A., Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc. Natl. Acad. Sci. U.S.A. 2011; 108(Suppl. 1): 4645–52. DOI: 10.1073/pnas.1000099107.

Mu Q., Tavella V.J., Luo X.M. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol. 2018; 9: 757. DOI: 10.3389/fmicb.2018.00757.

Дедикова О.В., Кучина А.Е., Бережная И.В., Захарова И.Н. L. reuteri DSM 17938: От истории открытия штамма до появления доказательных исследований (штаммоспецифичности). Медицинский совет. 2022; 16(12): 44–8.

Li F., Li X., Cheng C.C. et al. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. BMC Biol. 2023; 21(1): 53. DOI: 10.1186/s12915-023-01541-1.

Valeur N., Engel P., Carbajal N. et al. Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract. Appl. Environ. Microbiol. 2004; 70: 1176–81. DOI: 10.1128/AEM .70. 2 .1176 -1181. 20 0 4.

Rosander A., Connolly E., Roos S. Removal of antibio tic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol. 2008; 74: 6032–40. DOI: 10.1128/AEM.00991-08.

Duar R.M., Lin X.B., Zheng J. et al. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017; 41: S27–S48. DOI: 10.1093/femsre/fux030.

Kubota M., Ito K., Tomimoto K., et al. Lactobacillus reuteri DSM 17938 and Magnesium Oxide in Children with Functional Chronic Constipation: A Double-Blind and Randomized Clinical Trial. Nutrients. 2020; 12: 225. DOI: 10.3390/nu12010225.

Ojetti V., Petruzziello C., Migneco A. et al. Effect of Lactobacillus reuteri (DSM 17938) on methane production in patients affected by functional constipation: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2017; 21: 1702–8.

Saviano A., Brigida M., Migneco A. et al. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina (Kaunas). 2021; 57(7): 643. DOI: 10.3390/medicina57070643.

Salas-Jara M.J., Ilabaca A., Vega M., Garcia A. Biofilm forming Lactobacillus: new challenges for the de-velopment of probiotics. Microorganisms. 2016; 4: E35. DOI: 10.3390/microorganisms4030035.

Krumbeck J.A., Marsteller N.L., Frese S.A. et al. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. En-v i r o n . M i c r o b i o l . 2 016 ; 18 : 217 2 – 8 4 . D O I : 10 .1111/ 14 6 2 -2920.13108.

Hou C., Zeng X., Yang F. et al. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J. Anim. Sci. Biotechnol. 2015; 6: 14. DOI: 10.1186/s40104-015-0014-3.

Gunning A.P., Kavanaugh D., Thursby E. et al. Use of atomic force microscopy to study the multi-modular interaction of bacterial adhesins to mucins. Int. J. Mol. Sci. 2016; 17: E1854. DOI: 10.3390/ijms17111854.

Mackenzie D.A., Jeffers F., Parker M. L. et al. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lac-tobacillus reuteri. Microbiology. 2010; 156(Pt 11): 3368–78. DOI: 10.1099/mic.0.043265-0.

Walter J., Schwab C., Loach D.M. et al. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lac-tobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colo-nization of the mouse gastrointestinal tract. Microbiology. 2008; 154(Pt 1): 72–80. DOI: 10.1099/mic.0.2007/010637-0.

Frese S.A., Mackenzie D.A., Peterson D.A. et al. Molecular characterization of host-specificbio-film formation in a vertebrate gut symbiont. PLoS Genet. 2013; 9: e1004057. DOI: 10.1371/journal.pgen.1004057.

Su M.S., Ganzle M.G. Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23. Micro-biology. 2014; 160(Pt 4): 795–806. DOI: 10.1099/mic.0.071399-0.

McMillan A., Dell M., Zellar M.P. et al. Disruption of urogenital biofilms by lactobacilli. Colloids Surf. B Biointerfaces. 2011; 86: 58–64. DOI: 10.1016/j.col-surfb.2011.03.016.

Talarico T.L., Dobrogosz W.J. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 1989; 33: 674–9. DOI: 10.1128/AAC.33.5.674.

Greifova G., Majekova H., Greif G., Body P., Greifova M., Dubnickova M et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Mi-crobiol. 2017; 62: 515–24. DOI: 10.1007/s12223-017-0524-9.

Chen G., Chen J. A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 2013; 97: 4325–32. DOI: 10.1007/s00253-013-4723-2.

Yang G., Tian J., Li J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl. Microbiol. Biotechnol. 2007; 73: 1017–24. DOI: 10.1007s00253-006-0563-7.

Stevens M.J., Vollenweider S., Meile L., Lacroix C. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hy-droxypropionaldehyde production. Microb. Cell Fact. 2011: 10: 61. DOI: 10.1186/1475-2859-10-61.

Engels C., Schwab C., Zhang J. et al. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep. 2016; 6: 36246. DOI: 10.1038/srep36246.

Mishra S.K., Malik R.K., Manju G. et al. Characterization of a reuterin-producing Lactobacillus reuteri BPL-36 strain isolated from human infant fecal sam-ple. Probiotics Antimicrob. Proteins 2012; 4: 154–61. DOI: 10.10 07/s12602- 012-9103-1.

Abhisingha M., Dumnil J., Pitaksutheepong C. Senhibitory activity against Salmonella and fecal coliform bacteria. Probiotics Antimicrob. Proteins. 2 017. D O I : 10 .10 07/s126 02- 017- 93 0 4 - 8 .lection of potential probiotic Lactobacillus with

Genis S., Sanchez-Chardi A., Bach A., et al. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J. Dairy Sci. 2017; 100: 479–92. DOI: 10. 3168/jds. 2016 -11671.

Cherian P.T., Wu X., Yang L. et al. Gastrointestinal localization of metronidazole by a lactobacilli-in-spired tetramic acid motif improves treatment out-comes in the hamster model of Clostridium difficile infection. J. Antimicrob. Chemother. 2015; 70: 3061–9. DOI: 10.1093/jac/dkv231.

Ojetti V., Bruno G., Ainora M.E. et al. Impact of Lac-tobacillus reuteri supplementation on anti-Helicobacter pylori levofloxacin-based second-line the-rapy. Gastroenterol. Res. Pract. 2012: 740381. DOI:10.1155/2012/740381.

Ang L.Y., Too H.K., Tan E.L. et al. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skele-tal muscle and colon cell lines. Virol. J. 2016; 13: 111. DOI: 10.1186/s12985-016-0567-6.

Karaffova V., Csank T., Mudronova D. et al. Influence of Lactobacillus reuteri L26 Biocenol on immune re-sponse against porcine circovirus type 2 infection in germ-free mice. Benef. Microbes. 2017; 8: 367–78. DOI: 10.3920/BM2016.0114.

Mudronova D., Kiraly J., Revajova V. et al. Influence of Lactobacillus reuteri L26 Biocenol on immune re-sponse against porcine circovirus type 2 infection in germ-free mice. Benef. Microbes. 2017; 8: 367–78. DOI: 10.3920/BM2016.0114.

Piyathilake C.J., Ollberding N.J., Kumar R. et al. Cervical microbiota associated with higher grade cervical intraepithelial neoplasia in women infec-ted with high-risk human papillomaviruses. Cancer Prev. Res. 2016; 9: 357–66. DOI: 10.1158/1940-6207.CAPR-15-0350.

Jorgensen M.R., Kragelund C., Jensen P.O. et al. Probiotic Lactobacillus reuteri has anti-fungal effects on oral Candida species in vitro. J. Oral Microbiol. 2017; 9: 1274582. DOI: 10.1080/20002297.2016.1274582.

Jones S.E., Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-in-flammatory factors. BMC Microbiol. 2009; 9: 35. 10.1186/1471-2180 -9 -35.

Greifova G., Majekova H., Greif G. et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiol. 2017; 62: 515–24. DOI: 10.1007/s12223-017-0524-9.

Gao C., Major A., Rendon D. et al. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri. mBio 2015; 6: e01358-15. DOI: 10.1128/mBio.01358-15.

Thomas C.M., Hong T., van Pijkeren J.P. et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012 7: e31951. DOI: 10.1371/journal.pone.0031951.

Santos F., Spinler J.K., Saulnier D.M. et al. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microb. Cell Fact. 2011; 10: 55. DOI: 10.1186/1475-2859 -10 -55.

Gu Q., Zhang C., Song D. et al. Enhancing vitamin B12content in soy-yogurt by Lactobacillus reuteri. Int. J. Food Microbiol. 2015; 206: 56–9. DOI: 10.1016/j.ijfoodmicro.2015.04.033.

Thomas C.M., Saulnier D.M., Spinler J.K. et al. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lacto-bacillus reuteri. Microbiologyopen. 2016; 5: 802–18. DOI: 10.1002/mbo3.371.

Ksonzekova P., Bystricky P., Vlckova S. et al. Exopolysaccharides of Lactobacillus reuteri: their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr. Polym. 2016; 141: 10 –9. DOI: 10.1016/j.carbpol. 2015.12.037.

Chen X.Y., Woodward A., Zijlstra R.T., Ganzle M.G. Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl. Environ. Microbiol. 2014; 80: 5752–60. DOI: 10.1128/AEM.01782-14.

Wang Y., Ganzle M.G., Schwab C. Exopolysac-charide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes. Appl. Environ. Microbiol. 2010; 76: 4863–6. DOI: 10.1128/AEM.03137-09.

Sims I.M., Frese S.A., Walter J. et al. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J. 2011; 5: 1115–24. DOI: 10.1038/ismej.2010.201.

He B., Hoang T.K., Wang T. et al. Resetting micro-biota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J. Exp. Med. 2017; 214: 107–23. DOI: 10.108 4/jem. 20160961.

Hsieh F.C., Lan C.C., Huang T.Y. et al. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. 2016.

Lee J., Yang W., Hostetler A. et al. Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol. 2016; 16: 69. DOI: 10.1186/s12866-016-0686-7.

Zelante T., Iannitti R.G., Cunha C. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013; 39: 372–85. DOI: 10.1016/j.immuni. 2013.08.003.

Cervantes-Barragan L., Chai J.N., Tianero M.D. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8alphaalpha+ T cells. Science 2017: 357: 806 –10. DOI: 10.1126/science. aah5825.

Nguyen N.T., Hanieh H., Nakahama T., Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int. Immunol. 2013; 25: 335–43. DOI: 10.1093/intimm/dx t011.

Wang P., Li Y., Xiao H. et al. Isolation of lactobacil-lus reuteri from Peyer’s patches and their effects on sIgA production and gut microbiota diversity. Mol. Nutr. Food Res. 2016; 60: 2020–30. DOI: 10.1002/mnfr.201501065.

Braathen G., Ingildsen V., Twetman S. et al. Presence of Lactobacillus reuteri in saliva coincide with hi gher salivary IgA in young adults after intake of probiotic lozenges. Benef. Microbes. 2017; 8: 17–22. DOI: 10.3920/BM2016.0081.

Bottcher M.F., Abrahamsson T.R., Fredriksson M., et al. Low breast milk TGF-beta2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy. Pediatr. Allergy Immunol. 2008; 19: 497–504. DOI: 10 .1111/ j .13 9 9 - 3 0 3 8 . 2 0 0 7. 0 0 6 8 7. x .

Jorgensen M.R., Keller M.K., Kragelund C. et al. Lactobacillus reuteri supplements do not affect salivary IgA or cytokine levels in healthy subjects: a randomized, double-blind, placebo-controlled, cross-over trial. Acta Odontol. Scand. 2016; 74: 399–40 4. DOI: 10. 3109/0 0 016357. 2016.1169439.

Pallin A., Agback P., Jonsson H., Roos S. Evaluation of growth, metabolism and production of potentially bioactive components during fer-mentation of barley with Lactobacillus reuteri. Food Microbiol. 2016; 57: 159–71. DOI: 10.1016/j.fm.2016.02.011.

Lai N.Y., Mills K., Chiu I.M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J. Intern. Med. 2017; 282: 5–23. DOI: 10 .1111/ j o i m .12 5 91.

Богданова Н.М., Пеньков Д.Г., Кравцова К.А., Волкова И.С. Состояние микроэкологии кишечника и активность местного иммунного ответа в возрастном аспекте. Children’s Medicine of the North-West. 2021; 9(3): 40–53.

Карпеева Ю.С., Новикова В.П., Хавкин А.И. и др. Микробиота и болезни человека: возможности диетической коррекции. Российский вестник перинатологии и педиатрии. 2020; 65(5): 116–25. DOI: 10.21508/1027-4065-2020- 65-5-116-125.

Galley J.D., Mackos A.R., Varaljay V.A., Bailey M.T. Stressor exposure has prolonged eff

ects on colonic microbial community structure in Citrobacter rodentium-challenged mice. Sci. Rep. 2017; 7: 45012. DOI: 10.1038/srep45012.

Garcia Rodenas C.L., Lepage M., Ngom-Bru C. et al. Effect of formula containing Lactobacillus reuteri DSM 17938 on fecal microbiota of infants born by ce-sarean-section. J. Pediatr. Gastroenterol. Nutr. 2016; 63: 681–7. DOI: 10.1097/MPG.0000000000001198.

Britton R.A., Irwin R., Quach D. et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J. Cell. Physiol. 2014; 229: 1822–30. DOI: 10.1002/jcp.24636.

Savino F., Fornasero S., Ceratto S. et al. Probiotics and gut health in infants: a preliminary case-control observational study about early treatment with Lactobacillus reuteri DSM 17938. Clin. Chim. Acta. 2015; 451(Pt A): 82–7. DOI: 10.1016/j.cca.2015.02.027.

Martoni C.J., Labbe A., Ganopolsky J.G. et al. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes.2015; 6: 57–65. DOI: 10.10 8 0/19 49 0 976 . 2015.10 05 474.

Jones M.L., Martoni C.J., Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur. J. Clin. Nutr. 2012; 66: 1234–41. DOI: 10.1038/ejcn. 2012.126.

Mu Q., Kirby J., Reilly C.M., Luo X.M. Leaky gut as a danger signal for autoimmune diseases. Front. Immunol. 2017; 8: 598. DOI: 10.3389/fim-mu.2017.00598.

Mu Q., Zhang H., Liao X. et al. Control of lupus nephritis by changes of gut microbiota. Microbiome 2017; 5: 73. DOI: 10.1186/s40168-017-03008.

Yang F., Wang A., Zeng X. et al. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 2015; 15: 32. DOI: 10.1186/s12866-015-0372-1.

Wang Z., Wang L., Chen Z. et al. In vitro evaluation of swine-derived Lactobacillus reuteri: probiotic properties and effects on intestinal porcine epi-thelial cells challenged with enterotoxigenic Es-cherichia coli K88. J. Microbiol. Biotechnol. 2016; 26: 1018 –25. DOI: 10.4014/jmb.1510.10089.

De Benedetto A., Rafaels N.M., McGirt L.Y. et al. Tight junction defects in patients with atopic der-matitis. J. Allergy Clin. Immunol. 2011; 127: 771.e7–786.e7. DOI: 10.1016/j.jaci. 2010.10.018.

Romani Vestman N., Chen T., Lif Holgerson P. et al. Oral microbiota shift after 12-week supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; a randomized control trial. PLoS One. 2015; 10 : e 012 5 812 . D O I : 10 .1371/ j o u r n a l . p o n e . 012 5 812 .

Petricevic L., Unger F.M., Viernstein H., Kiss H. Randomized, double-blind, placebo-controlled study of oral lactobacilli to improve the vaginal flora of postmenopausal women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008; 141: 54–7. DOI: 10.1016/j.ejogrb.2008.06.003

Macklaim J.M., Clemente J.C., Knight R. et al. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Health Dis. 2015; 26: 27799. DOI: 10.3402/mehd.v26.27799.

Dos Reis Buzzo Zermiani A.P., de Paula Soares ALPP., da Silva Guedes de Moura B.L. et al. Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: Systematic review and meta-analysis. Complement Ther Med. 2021; 63: 102781. DOI: 10.1016/j.ctim.2021.102781.

Бельмер С.В., Волынец Г.В., Горелов А.В. и др. Функциональные расстройства органов пищеварения у детей рекомендации общества детских гастроэнтерологов, гепатологов и нутрициологов. Редакция от 02.02.2022 г. В сбор-нике: Актуальные проблемы абдоминальной патологии у детей. Под общей редакцией проф. С.В. Бельмера и проф. Л.И. Ильенко. 2022: 192–276.

Indrio F., Di Mauro A., Riezzo G. et al. Prophylactic use of a probiotic in the prevention of colic, regurgitation, and functional constipation: a randomized clinical trial. JAMA Pediatr. 2014; 168: 228–33. DOI: 10.1001/jamapediatrics.2013.4367.

Szajewska H., Gyrczuk E., Horvath A. Lactobacillus reuteri DSM 17938 for the management of infantile colic in breastfed infants: a randomized, dou-ble-blind, placebo-controlled trial. J. Pediatr. 2013; 162: 257–62. DOI: 10.1016/j.jpeds.2012.08.004.

Mi G.L., Zhao L., Qiao D.D. et al. Effectiveness of Lactobacillus reuteri in infantile colic and colicky induced maternal depression: a prospective single blind randomized trial. Antonie Van Leeuwenhoek. 2015; 107: 15 47–53. D O I : 10.10 07/s10 4 82- 015 - 0 4 4 8 - 9.

Savino F., Ceratto S., Poggi E. et al. Preventive ef-fects of oral probiotic on infantile colic: a prospective, randomised, blinded, controlled trial using Lactobacillus reuteri DSM 17938. Benef. Microbes. 2015; 6: 245–51. DOI: 10.3920/BM2014.0090.

Savino F., Cordisco L., Tarasco V. et al. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 2010; 126: e526 – e533. DOI: 10.1542/peds. 2010 -0433.

Dryl R., Szajewska H. Probiotics for management of infantile colic: a systematic review of randomized controlled trials. Arch. Med. Sci. 2018; 14(5): 1137–43.

Kianifar H., Ahanchian H., Grover Z. et al. Synbiotic in the management of infantile colic: a randomised controlled trial. J. Paediatr. Child Health. 2014; 50(10): 801–5.

Roos S., Dicksved J., Tarasco V. et al. 454 pyrose-quencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLoS One. 2013; 8: e56710. DOI: 10.1371/journal.pone.0056710.

Sung V., Hiscock H., Tang M.L. et al. Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial. BMJ 2014; 348: g2107. DOI: 10.1136/bmj.g2107.

Savino F., Pelle E., Palumeri E. et al. Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile co lic: a prospective randomized study. Pediatrics. 2007; 119: e124–e130. DOI: 10.1542/peds.2006-1222.

Soto A., Martin V., Jimenez E. et al. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 2014; 59: 78–88. DOI: 10.1097/MPG.0000000000000347.

Корниенко Е.А., Вагеманс Н.В., Нетребенко О.К. Младенческие кишечные колики: современные представления о механизмах развития и новые возможности терапии. Вопросы современной педиатрии. 2010; 5 (33): 176–83.

Vandenplas Y., Benninga M., Broekaert I. et al. Func-tional gastrointestinal disorder algorithms focus on early recognition, parental reassurance and nutri-tional strategies. Acta Paediatr. 2016; 105(3): 244–52.

Garofoli F., Civardi E., Indrio F. et al. The early admi-nistration of Lactobacillus reuteri DSM 17938 con-trols regurgitation episodes in full-term breastfed infants. Int. J. Food Sci. Nutr. 2014; 65: 646–8. DOI: 10. 3109/09637486. 2014.898251.

Romano C., Ferrau V., Cavataio F. et al. Lactobacillus reuteri in children with functional abdominal pain (FAP). J. Paediatr. Child Health 2014; 50: E68–E71. D O I : 10 .1111/ j .14 4 0 -17 5 4 . 2 010 . 017 9 7. x .

Weizman Z., Abu-Abed J., Binsztok M. Lactoba-cillus reuteri DSM 17938 for the management of functional abdominal pain in childhood: a rando-mized, double-blind, placebo-controlled trial. J. Pediatr. 2016; 174: 160.e1–16 4.e1. DOI: 10.1016/j.jpeds.2016.04.003.

Ojetti V., Ianiro G., Tortora A. et al. The Effect of Lac-tobacillus reuteri Supplementation in Adults with Chronic Functional Constipation: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Gastro-intest. Liver Dis. 2014; 23: 387–91. DOI: 10.15403/jgld.2014.1121.234.elr.

Coccorullo P., Strisciuglio C., Martinelli M. et al. Lac-tobacillus reuteri (DSM 17938) in Infants with Func-tional Chronic Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. J. Pediatr. 2010; 157: 598 – 602. DOI: 10.1016/j.jpeds. 2010.04.066.

Riezzo G., Chimienti G., Orlando A. et al. Effects of long-term administration of Lactobacillus reuteriDSM-17938 on circulating levels of 5-HT and BDNF in adults with functional constipation. Benef. Microbes. 2019; 10: 137–47. DOI: 10.3920/BM2018.0050.

Dimidi E., Scott S.M., Whelan K. Probiotics and con-stipation: Mechanisms of action, evidence for effectiveness and utilisation by patients and health-care professionals. Proc. Nutr. Soc.2019; 79: 147–57. DOI: 10.1017/S0029665119000934.

Dimidi E., Christodoulides S., Scott S.M., Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Con-stipation. Adv. Nutr.2017; 8: 48494. DOI: 10.3945/an.116.014407.

Jadrešin O., Sila S., Trivić I. et al. Lack of Benefit of Lactobacillus reuteri DSM 17938 as an Addition to the Treatment of Functional Constipation. J. Pediatr. Gastroenterol. Nutr. 2018; 67: 763–6. DOI: 10.1097/MPG.0000000000002134.

Gomes D.O.V.S., Morais M.B. Gut microbiota and the use of probiotics in constipation in children and adolescents: Systematic review. Rev. Paul Pediatr. 2020; 38: e2018123. DOI: 10.1590/1984-0462/2020/38/2018123.

Wegh C.A.M., Benninga M.A., Tabbers M.M. Ef-fectiveness of Probiotics in Children with Functional Abdominal Pain Disorders and Functional Constipation: A Systematic Review. J. Clin. Gastroenterol.2018; 52: S10–S26. DOI: 10.1097/MCG.0000000000001054.

West C.L., Stanisz A.M., Mao Y.-K. et al. Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice. PLoS ONE. 2020; 15: e0225481. DOI: 10.1371/journal.pone.0225481.

Hojsak I. Probiotics in Functional Gastrointestinal Disorders. Adv. Exp. Med. Biol.2018; 1125: 121–37. DOI: 10.1007/5584_2018_321.

Jadrešin O., Sila S., Trivić I. et al. Lactobacillus reu-teri DSM 17938 is effective in the treatment of func-tional abdominal pain in children: Results of the double-blind randomized study. Clin. Nutr.2020; 39: 3645–51. DOI: 10.1016/j.clnu.2020.04.019.

Trivić I., Niseteo T., Jadrešin O., Hojsak I. Use of probiotics in the treatment of functional abdominal pain in children — Systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging.2021; 180: 339–51. DOI: 10.1007/s00431-020-03809-y.

Szajewska H., Guarino A., Hojsak I. et al. Use of Probiotics for the Management of Acute Gastroenteritis in Children: An Update. J. Pediatr. Gastroenterol. Nutr.2020; 71: 261–9. DOI: 10.1097/MPG.0000000000002751.

Francavilla R., Lionetti E., Castellaneta S. et al. Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea — A double-blind study. Aliment. Pharmacol. Ther.2 012 ; 3 6 : 3 6 3 – 9 . D O I : 10 .1111/ j .13 6 5 -2036.2012.05180.x.

Dinleyici E.C., Dalgic N., Guven S. et al. Lactobacillus reuteri DSM 17938 shortens acute infectious diarrhea in a pediatric outpatient setting. J. Pediatr. 2015; 91: 392–6. DOI: 10.1016/j.jped.2014.10.009.

Amoroso C., Perillo F., Strati F. et al. The Role of GutMicrobiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells.2020; 9: 1234. DOI: 10.3390/cells9051234.

Wilkins T., Sequoia J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Phys. 2017; 96: 170–8.

Shornikova A.V., Casas I.A., Mykkänen H. et al. Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr. Infect. Dis. J. 1997; 16: 1103–7. DOI: 10.1097/00006454-199712000-00002.

Shornikova A.-V., Casas I.A., Isolauri E. et al. Lactobacillus reuteri as a Therapeutic Agent in Acute Diarrhea in Young Children. J. Pediatr. Gastroente-rol. Nutr.1997; 24: 399–404. DOI: 10.1097/00005176-199704000-00008.

Dinleyici E.C., Vandenplas Y., PROBAGE Study Group. Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospita-lised children. Acta Paediatr.2014; 103: e300–e305. D O I : 10 .1111/ a p a .12 617.

Urbańska M., Gieruszczak-Białek D., Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in chil-dren. Aliment. Pharmacol. Ther. 2016; 43: 1025–34. D O I : 10 .1111/ a p t .13 5 9 0 .

Szymański H., Szajewska H. Lack of Efficacy of Lactobacillus reuteri DSM 17938 for the Treatment of Acute Gastroenteritis: A Randomized Controlled Trial. Pediatr. Infect. Dis. J. 2019; 38: e237–e242. DOI: 10.1097/INF.0000000000002355.

Margiotta G., Ferretti S., Graglia B. et al. Effect of Lactobacillus reuteri LRE02-Lactobacillus rhamnosus LR04 combination and gastrointestinal functional disorders in an Emergency Department pediatric population. Eur. Rev. Med. Pharmacol. Sci. 2021; 25: 3097–3104.

Patro-Gołąb B., Szajewska H. Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gas-troenteritis in Children. An Update. Nutrients. 2019; 11: 11. DOI: 10 . 3 3 9 0 / n u11112 76 2 .

Rojas M.A., Lozano J.M., Rojas M.X. et al. Prophy-lactic probiotics to prevent death and nosocomial infection in preterm infants. Pediatrics.2012; 130: e1113 – e112 0 . D O I : 10 .15 4 2 / p e d s . 2 011 - 3 5 8 4 .

Oncel M.Y., Sari F.N., Arayici S. et al. Lactobacillus reuteri for the prevention of necrotising enterocolitis in very low birthweight infants: a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2014; 99: F110–F115. DOI: 10.1136/archdis-child-2013-304745.

Rosenfeldt V., Benfeldt E., Nielsen S.D. et al. Effect of probiotic Lactobacillus strains in children with at-opic dermatitis. J Allergy Clin Immunol. 2003; 111(2):

–95. DOI: 10.1067/mai.2003.389. PMID: 12589361.

Miniello V.L., Brunetti L., Tesse R. et al. Lactobacillus reuteri modulates cytokines production in exhaled breath condensate of children with atopic derma-titis. J. Pediatr. Gastroenterol. Nutr.2010; 50: 573–6. DOI: 10.1097/MPG.0b013e3181bb343f.

Abrahamsson T.R., Jakobsson T., Bottcher M.F. et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J. Allergys Clin. Immunol. 2007; 119: 1174–80. DOI: 10.1016/j.jaci. 2007.01.007.

Abrahamsson T.R., Jakobsson T., Bjorksten B. et al. No effect of probiotics on respiratory allergies: a seven-year follow-up of a randomized controlled trial in infancy. Pediatr. Allergy Immunol. 2013; 24: 5 5 6 – 61. D O I : 10 .1111/ p a i .1210 4 .

Million M., Thuny F., Angelakis E. et al. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr. Diabetes. 2013; 3: e87. DOI: 10.1038/nutd.2013.28.

Chung H.J., Yu J.G., Lee I.A. et al. Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity. FEBS Open Bio 2016; 6: 64–76. DOI: 10.1002/2211-5463.12024.

Braegger C., Chmielewska A., Decsi T. et al. Supple-mentation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2011; 52: 238–50. DOI: 10.1097/

MPG.0b013e3181fb9e80.

Dore M.P., Bibbò S., Loria M. et al. Twice-a-day PPI, tetracycline, metronidazole quadruple therapy with Pylera® or Lactobacillus reuteri for treatment naïve or for retreatment of Helicobacter pylori. Two randomized pilot studies. Helicobacter. 2019; 24: e12 6 5 9 . D O I : 10 .1111/ h e l .12 6 5 9 .

Dore M.P., Cuccu M., Pes G.M. et al. Lactobacillus reuteri in the treatment of Helicobacter pylori infection. Intern. Emerg. Med. 2014; 9: 649–54. DOI: 10.1007/s11739 - 013-1013-z.

Dore M.P., Goni E., Di Mario F. Is There a Role for Probiotics in Helicobacter pylori Therapy? Gastroenterol. Clin. N. Am. 2015; 44: 565–75. DOI: 10.1016/j.gtc.2015.05.005.

Emara M.H., Elhawari S.A., Yousef S. et al. Emerging Role of Probiotics in the Management of Helicobacter pylori Infection: Histopathologic Perspectives. H e l i c o b a c t e r. 2 016 ; 21: 3 –10 . D O I : 10 .1111/ h e l .12 2 3 7.

Emara M.H., Mohamed S.Y., Abdel-Aziz H.R. Lactobacillus reuteri in management of Helicobacter pylori infection in dyspeptic patients: A double-blind placebo-controlled randomized clinical trial. Ther. Adv. Gastroenterol. 2014; 7: 4–13. DOI: 10 .117 7/175 62 8 3X135 03514 .

Buckley M., Lacey S., Doolan A. et al. The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection: A placebo-controlled, single-blind study. BMC Nutr. 2018; 4: 48. DOI: 10.1186/s40795-018-0257-4.

REFERENCES

Walter J., Britton R.A., Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc. Natl. Acad. Sci. U.S.A. 2011; 108(Suppl. 1): 4645–52. DOI: 10.1073/pnas.1000099107.

Mu Q., Tavella V.J., Luo X.M. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol. 2018; 9: 757. DOI: 10.3389/fmicb.2018.00757.

Dedikova O.V., Kuchina A.Ye., Berezhnaya I.V., Zakharova I.N. L. reuteri DSM 17938: Ot istorii otkrytiya shtamma do poyavleniya dokazatel’nykh issledovaniy (shtammospetsifichnosti). [L. Reuteri DSM 17938: From the history of the opening of the strain to the advent of evidencebased studies (strain)]. Meditsinskiy sovet. 2022; 16(12): 44–8. (In Russian)

Li F., Li X., Cheng C.C. et al. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. BMC Biol. 2023; 21(1): 53. DOI: 10.1186/s12915-023-01541-1.

Valeur N., Engel P., Carbajal N. et al. Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract. Appl. Environ. Microbiol. 2004; 70: 1176–81. DOI: 10.1128/AEM .70. 2 .1176 -1181. 20 0 4.

Rosander A., Connolly E., Roos S. Removal of antibio tic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol. 2008; 74: 6032–40. DOI: 10.1128/AEM.00991-08.

Duar R.M., Lin X.B., Zheng J. et al. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017; 41: S27–S48. DOI: 10.1093/femsre/fux030.

Kubota M., Ito K., Tomimoto K., et al. Lactobacillus reuteri DSM 17938 and Magnesium Oxide in Children with Functional Chronic Constipation: A Double-Blind and Randomized Clinical Trial. Nutrients. 2020; 12: 225. DOI: 10.3390/nu12010225.

Ojetti V., Petruzziello C., Migneco A. et al. Effect of Lactobacillus reuteri (DSM 17938) on methane production in patients affected by functional constipation: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2017; 21: 1702–8.

Saviano A., Brigida M., Migneco A. et al. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina (Kaunas). 2021; 57(7): 643. DOI: 10.3390/medicina57070643.

Salas-Jara M.J., Ilabaca A., Vega M., Garcia A. Biofilm forming Lactobacillus: new challenges for the de-velopment of probiotics. Microorganisms. 2016; 4: E35. DOI: 10.3390/microorganisms4030035.

Krumbeck J.A., Marsteller N.L., Frese S.A. et al. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. En-v i r o n . M i c r o b i o l . 2 016 ; 18 : 217 2 – 8 4 . D O I : 10 .1111/ 14 6 2 -2920.13108.

Hou C., Zeng X., Yang F. et al. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J. Anim. Sci. Biotechnol. 2015; 6: 14. DOI: 10.1186/s40104-015-0014-3.

Gunning A.P., Kavanaugh D., Thursby E. et al. Use of atomic force microscopy to study the multi-modular interaction of bacterial adhesins to mucins. Int. J. Mol. Sci. 2016; 17: E1854. DOI: 10.3390/ijms17111854.

Mackenzie D.A., Jeffers F., Parker M. L. et al. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lac-tobacillus reuteri. Microbiology. 2010; 156(Pt 11): 3368–78. DOI: 10.1099/mic.0.043265-0.

Walter J., Schwab C., Loach D.M. et al. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lac-tobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colo-nization of the mouse gastrointestinal tract. Microbiology. 2008; 154(Pt 1): 72–80. DOI: 10.1099/mic.0.2007/010637-0.

Frese S.A., Mackenzie D.A., Peterson D.A. et al. Molecular characterization of host-specificbio-film formation in a vertebrate gut symbiont. PLoS Genet. 2013; 9: e1004057. DOI: 10.1371/journal.pgen.1004057.

Su M.S., Ganzle M.G. Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23. Micro-biology. 2014; 160(Pt 4): 795–806. DOI: 10.1099/mic.0.071399-0.

McMillan A., Dell M., Zellar M.P. et al. Disruption of urogenital biofilms by lactobacilli. Colloids Surf. B Biointerfaces. 2011; 86: 58–64. DOI: 10.1016/j.col-surfb.2011.03.016.

Talarico T.L., Dobrogosz W.J. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 1989; 33: 674–9. DOI: 10.1128/AAC.33.5.674.

Greifova G., Majekova H., Greif G., Body P., Greifova M., Dubnickova M et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Mi-crobiol. 2017; 62: 515–24. DOI: 10.1007/s12223-017-0524-9.

Chen G., Chen J. A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 2013; 97: 4325–32. DOI: 10.1007/s00253-013-4723-2.

Yang G., Tian J., Li J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl. Microbiol. Biotechnol. 2007; 73: 1017–24. DOI: 10.1007s00253-006-0563-7.

Stevens M.J., Vollenweider S., Meile L., Lacroix C. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hy-droxypropionaldehyde production. Microb. Cell Fact. 2011: 10: 61. DOI: 10.1186/1475-2859-10-61.

Engels C., Schwab C., Zhang J. et al. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep. 2016; 6: 36246. DOI: 10.1038/srep36246.

Mishra S.K., Malik R.K., Manju G. et al. Characterization of a reuterin-producing Lactobacillus reuteri BPL-36 strain isolated from human infant fecal sam-ple. Probiotics Antimicrob. Proteins 2012; 4: 154–61. DOI: 10.10 07/s12602- 012-9103-1.

Abhisingha M., Dumnil J., Pitaksutheepong C. Senhibitory activity against Salmonella and fecal coliform bacteria. Probiotics Antimicrob. Proteins. 2 017. D O I : 10 .10 07/s126 02- 017- 93 0 4 - 8 .lection of potential probiotic Lactobacillus with

Genis S., Sanchez-Chardi A., Bach A., et al. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J. Dairy Sci. 2017; 100: 479–92. DOI: 10. 3168/jds. 2016 -11671.

Cherian P.T., Wu X., Yang L. et al. Gastrointestinal localization of metronidazole by a lactobacilli-in-spired tetramic acid motif improves treatment out-comes in the hamster model of Clostridium difficile infection. J. Antimicrob. Chemother. 2015; 70: 3061–9. DOI: 10.1093/jac/dkv231.

Ojetti V., Bruno G., Ainora M.E. et al. Impact of Lac-tobacillus reuteri supplementation on anti-Helicobacter pylori levofloxacin-based second-line the-rapy. Gastroenterol. Res. Pract. 2012: 740381. DOI:10.1155/2012/740381.

Ang L.Y., Too H.K., Tan E.L. et al. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skele-tal muscle and colon cell lines. Virol. J. 2016; 13: 111. DOI: 10.1186/s12985-016-0567-6.

Karaffova V., Csank T., Mudronova D. et al. Influence of Lactobacillus reuteri L26 Biocenol on immune re-sponse against porcine circovirus type 2 infection in germ-free mice. Benef. Microbes. 2017; 8: 367–78. DOI: 10.3920/BM2016.0114.

Mudronova D., Kiraly J., Revajova V. et al. Influence of Lactobacillus reuteri L26 Biocenol on immune re-sponse against porcine circovirus type 2 infection in germ-free mice. Benef. Microbes. 2017; 8: 367–78. DOI: 10.3920/BM2016.0114.

Piyathilake C.J., Ollberding N.J., Kumar R. et al. Cervical microbiota associated with higher grade cervical intraepithelial neoplasia in women infec-ted with high-risk human papillomaviruses. Cancer Prev. Res. 2016; 9: 357–66. DOI: 10.1158/1940-6207.CAPR-15-0350.

Jorgensen M.R., Kragelund C., Jensen P.O. et al. Probiotic Lactobacillus reuteri has anti-fungal effects on oral Candida species in vitro. J. Oral Microbiol. 2017; 9: 1274582. DOI: 10.1080/20002297.2016.1274582.

Jones S.E., Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-in-flammatory factors. BMC Microbiol. 2009; 9: 35. 10.1186/1471-2180 -9 -35.

Greifova G., Majekova H., Greif G. et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiol. 2017; 62: 515–24. DOI: 10.1007/s12223-017-0524-9.

Gao C., Major A., Rendon D. et al. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri. mBio 2015; 6: e01358-15. DOI: 10.1128/mBio.01358-15.

Thomas C.M., Hong T., van Pijkeren J.P. et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012 7: e31951. DOI: 10.1371/journal.pone.0031951.

Santos F., Spinler J.K., Saulnier D.M. et al. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microb. Cell Fact. 2011; 10: 55. DOI: 10.1186/1475-2859 -10 -55.

Gu Q., Zhang C., Song D. et al. Enhancing vitamin B12content in soy-yogurt by Lactobacillus reuteri. Int. J. Food Microbiol. 2015; 206: 56–9. DOI: 10.1016/j.ijfoodmicro.2015.04.033.

Thomas C.M., Saulnier D.M., Spinler J.K. et al. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lacto-bacillus reuteri. Microbiologyopen. 2016; 5: 802–18. DOI: 10.1002/mbo3.371.

Ksonzekova P., Bystricky P., Vlckova S. et al. Exopolysaccharides of Lactobacillus reuteri: their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr. Polym. 2016; 141: 10 –9. DOI: 10.1016/j.carbpol. 2015.12.037.

Chen X.Y., Woodward A., Zijlstra R.T., Ganzle M.G. Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl. Environ. Microbiol. 2014; 80: 5752–60. DOI: 10.1128/AEM.01782-14.

Wang Y., Ganzle M.G., Schwab C. Exopolysac-charide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes. Appl. Environ. Microbiol. 2010; 76: 4863–6. DOI: 10.1128/AEM.03137-09.

Sims I.M., Frese S.A., Walter J. et al. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J. 2011; 5: 1115–24. DOI: 10.1038/ismej.2010.201.

He B., Hoang T.K., Wang T. et al. Resetting micro-biota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J. Exp. Med. 2017; 214: 107–23. DOI: 10.108 4/jem. 20160961.

Hsieh F.C., Lan C.C., Huang T.Y. et al. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. 2016.

Lee J., Yang W., Hostetler A. et al. Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol. 2016; 16: 69. DOI: 10.1186/s12866-016-0686-7.

Zelante T., Iannitti R.G., Cunha C. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013; 39: 372–85. DOI: 10.1016/j.immuni. 2013.08.003.

Cervantes-Barragan L., Chai J.N., Tianero M.D. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8alphaalpha+ T cells. Science 2017: 357: 806 –10. DOI: 10.1126/science. aah5825.

Nguyen N.T., Hanieh H., Nakahama T., Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int. Immunol. 2013; 25: 335–43. DOI: 10.1093/intimm/dx t011.

Wang P., Li Y., Xiao H. et al. Isolation of lactobacil-lus reuteri from Peyer’s patches and their effects on sIgA production and gut microbiota diversity. Mol. Nutr. Food Res. 2016; 60: 2020–30. DOI: 10.1002/mnfr.201501065.

Braathen G., Ingildsen V., Twetman S. et al. Presence of Lactobacillus reuteri in saliva coincide with hi gher salivary IgA in young adults after intake of probiotic lozenges. Benef. Microbes. 2017; 8: 17–22. DOI: 10.3920/BM2016.0081.

Bottcher M.F., Abrahamsson T.R., Fredriksson M., et al. Low breast milk TGF-beta2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy. Pediatr. Allergy Immunol. 2008; 19: 497–504. DOI: 10 .1111/ j .13 9 9 - 3 0 3 8 . 2 0 0 7. 0 0 6 8 7. x .

Jorgensen M.R., Keller M.K., Kragelund C. et al. Lactobacillus reuteri supplements do not affect salivary IgA or cytokine levels in healthy subjects: a randomized, double-blind, placebo-controlled, cross-over trial. Acta Odontol. Scand. 2016; 74: 399–40 4. DOI: 10. 3109/0 0 016357. 2016.1169439.

Pallin A., Agback P., Jonsson H., Roos S. Evaluation of growth, metabolism and production of potentially bioactive components during fer-mentation of barley with Lactobacillus reuteri. Food Microbiol. 2016; 57: 159–71. DOI: 10.1016/j.fm.2016.02.011.

Lai N.Y., Mills K., Chiu I.M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J. Intern. Med. 2017; 282: 5–23. DOI: 10 .1111/ j o i m .12 5 91.

Bogdanova N.M., Pen'kov D.G., Kravtsova K.A., Volkova I.S. Sostoyaniye mikroekologii kishechnika i aktivnost' mestnogo immunnogo otveta v vozrastnom aspekte. [The state of intestinal microecology and the activity of a local immune response in the age aspect]. Children’s Medicine of the North-West. 2021; 9(3): 40–53. (in Russian).

Karpeyeva Yu.S., Novikova V.P., Khavkin A.I. i dr. Mikrobiota i bolezni cheloveka: vozmozhnosti diye ticheskoy korrektsii. [Microbiota and human disea ses: the possibilities of dietary correction]. Rossiyskiy vestnik perinatologii i pediatrii. 2020; 65(5): 116–25. DOI: 10.21508/1027-4065-2020-65-5-116-125. (in Russian)

Galley J.D., Mackos A.R., Varaljay V.A., Bailey M.T. Stressor exposure has prolonged effects on colonic microbial community structure in Citrobacter rodentium-challenged mice. Sci. Rep. 2017; 7: 45012. DOI: 10.1038/srep45012.

Garcia Rodenas C.L., Lepage M., Ngom-Bru C. et al. Effect of formula containing Lactobacillus reuteri DSM 17938 on fecal microbiota of infants born by ce-sarean-section. J. Pediatr. Gastroenterol. Nutr. 2016; 63: 681–7. DOI: 10.1097/MPG.0000000000001198.

Britton R.A., Irwin R., Quach D. et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J. Cell. Physiol. 2014; 229: 1822–30. DOI: 10.1002/jcp.24636.

Savino F., Fornasero S., Ceratto S. et al. Probiotics and gut health in infants: a preliminary case-control observational study about early treatment with Lactobacillus reuteri DSM 17938. Clin. Chim. Acta. 2015; 451(Pt A): 82–7. DOI: 10.1016/j.cca.2015.02.027.

Martoni C.J., Labbe A., Ganopolsky J.G. et al. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes.2015; 6: 57–65. DOI: 10.10 8 0/19 49 0 976 . 2015.10 05 474.

Jones M.L., Martoni C.J., Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur. J. Clin. Nutr. 2012; 66: 1234–41. DOI: 10.1038/ejcn. 2012.126.

Mu Q., Kirby J., Reilly C.M., Luo X.M. Leaky gut as a danger signal for autoimmune diseases. Front. Immunol. 2017; 8: 598. DOI: 10.3389/fim-mu.2017.00598.

Mu Q., Zhang H., Liao X. et al. Control of lupus nephritis by changes of gut microbiota. Microbiome 2017; 5: 73. DOI: 10.1186/s40168-017-03008.

Yang F., Wang A., Zeng X. et al. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 2015; 15: 32. DOI: 10.1186/s12866-015-0372-1.

Wang Z., Wang L., Chen Z. et al. In vitro evaluation of swine-derived Lactobacillus reuteri: probiotic properties and effects on intestinal porcine epi-thelial cells challenged with enterotoxigenic Es-cherichia coli K88. J. Microbiol. Biotechnol. 2016; 26: 1018 –25. DOI: 10.4014/jmb.1510.10089.

De Benedetto A., Rafaels N.M., McGirt L.Y. et al. Tight junction defects in patients with atopic der-matitis. J. Allergy Clin. Immunol. 2011; 127: 771.e7–786.e7. DOI: 10.1016/j.jaci. 2010.10.018.

Romani Vestman N., Chen T., Lif Holgerson P. et al. Oral microbiota shift after 12-week supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; a randomized control trial. PLoS One. 2015; 10 : e 012 5 812 . D O I : 10 .1371/ j o u r n a l . p o n e . 012 5 812 .

Petricevic L., Unger F.M., Viernstein H., Kiss H. Randomized, double-blind, placebo-controlled study of oral lactobacilli to improve the vaginal flora of postmenopausal women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008; 141: 54–7. DOI: 10.1016/j.ejogrb.2008.06.003

Macklaim J.M., Clemente J.C., Knight R. et al. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Health Dis. 2015; 26: 27799. DOI: 10.3402/mehd.v26.27799.

Dos Reis Buzzo Zermiani A.P., de Paula Soares ALPP., da Silva Guedes de Moura B.L. et al. Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: Systematic review and meta-analysis. Complement Ther Med. 2021; 63: 102781. DOI: 10.1016/j.ctim.2021.102781.

Bel'mer S.V., Volynets G.V., Gorelov A.V. i dr. Funktsional'nyye rasstroystva organov pishchevareniya u detey rekomendatsii obshchestva detskikh gastroenterologov, gepatologov i nutritsiologov. [Functional disorders of the digestive organs in children are recommendations of the Society of Children's Gastroenterologists, Hepatologists and Nutriologiologists]. Redaktsiya ot 02.02.2022 g V sbornike: Aktual'nyye problemy abdominal'noy patologii u detey. Pod obshchey redaktsiyey prof. S.V.Bel'mera i prof. L.I.Il'yenko.2022: 192–276. (in Russian).

Indrio F., Di Mauro A., Riezzo G. et al. Prophylactic use of a probiotic in the prevention of colic, regurgitation, and functional constipation: a randomized clinical trial. JAMA Pediatr. 2014; 168: 228–33. DOI: 10.1001/jamapediatrics.2013.4367.

Szajewska H., Gyrczuk E., Horvath A. Lactobacillus reuteri DSM 17938 for the management of infantile colic in breastfed infants: a randomized, dou-ble-blind, placebo-controlled trial. J. Pediatr. 2013; 162: 257–62. DOI: 10.1016/j.jpeds.2012.08.004.

Mi G.L., Zhao L., Qiao D.D. et al. Effectiveness of Lactobacillus reuteri in infantile colic and colicky induced maternal depression: a prospective single blind randomized trial. Antonie Van Leeuwenhoek. 2015; 107: 15 47–53. D O I : 10.10 07/s10 4 82- 015 - 0 4 4 8 - 9.

Savino F., Ceratto S., Poggi E. et al. Preventive ef-fects of oral probiotic on infantile colic: a prospective, randomised, blinded, controlled trial using Lactobacillus reuteri DSM 17938. Benef. Microbes. 2015; 6: 245–51. DOI: 10.3920/BM2014.0090.

Savino F., Cordisco L., Tarasco V. et al. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 2010; 126: e526 – e533. DOI: 10.1542/peds. 2010 -0433.

Dryl R., Szajewska H. Probiotics for management of infantile colic: a systematic review of randomized controlled trials. Arch. Med. Sci. 2018; 14(5): 1137–43.

Kianifar H., Ahanchian H., Grover Z. et al. Synbiotic in the management of infantile colic: a randomised controlled trial. J. Paediatr. Child Health. 2014; 50(10): 801–5.

Roos S., Dicksved J., Tarasco V. et al. 454 pyrose-quencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLoS One. 2013; 8: e56710. DOI: 10.1371/journal.pone.0056710.

Sung V., Hiscock H., Tang M.L. et al. Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial. BMJ 2014; 348: g2107. DOI: 10.1136/bmj.g2107.

Savino F., Pelle E., Palumeri E. et al. Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile co lic: a prospective randomized study. Pediatrics. 2007; 119: e124–e130. DOI: 10.1542/peds.2006-1222.

Soto A., Martin V., Jimenez E. et al. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 2014; 59: 78–88. DOI: 10.1097/MPG.0000000000000347.

Korniyenko Ye.A., Vagemans N.V., Netrebenko O.K. Mladencheskiye kishechnyye koliki: sovremennyye predstavleniya o mekhanizmakh razvitiya i novyye vozmozhnosti terapii. [Infant intestinal colic: mo dern ideas about development mechanisms and new opportunities for therapy]. Voprosy sovremennoy pediatrii. 2010; 5 (33): 176–83. (in Russian).

Vandenplas Y., Benninga M., Broekaert I. et al. Func-tional gastrointestinal disorder algorithms focus on early recognition, parental reassurance and nutri-tional strategies. Acta Paediatr. 2016; 105(3): 244–52.

Garofoli F., Civardi E., Indrio F. et al. The early admi-nistration of Lactobacillus reuteri DSM 17938 con-trols regurgitation episodes in full-term breastfed infants. Int. J. Food Sci. Nutr. 2014; 65: 646–8. DOI: 10. 3109/09637486. 2014.898251.

Romano C., Ferrau V., Cavataio F. et al. Lactobacillus reuteri in children with functional abdominal pain (FAP). J. Paediatr. Child Health 2014; 50: E68–E71. D O I : 10 .1111/ j .14 4 0 -17 5 4 . 2 010 . 017 9 7. x .

Weizman Z., Abu-Abed J., Binsztok M. Lactoba-cillus reuteri DSM 17938 for the management of functional abdominal pain in childhood: a rando-mized, double-blind, placebo-controlled trial. J. Pediatr. 2016; 174: 160.e1–16 4.e1. DOI: 10.1016/j.jpeds.2016.04.003.

Ojetti V., Ianiro G., Tortora A. et al. The Effect of Lac-tobacillus reuteri Supplementation in Adults with Chronic Functional Constipation: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Gastro-intest. Liver Dis. 2014; 23: 387–91. DOI: 10.15403/

jgld.2014.1121.234.elr.

Coccorullo P., Strisciuglio C., Martinelli M. et al. Lac-tobacillus reuteri (DSM 17938) in Infants with Func-tional Chronic Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. J. Pediatr. 2010; 157: 598 – 602. DOI: 10.1016/j.jpeds. 2010.04.066.

Riezzo G., Chimienti G., Orlando A. et al. Effects of long-term administration of Lactobacillus reuteriDSM-17938 on circulating levels of 5-HT and BDNF in adults with functional constipation. Benef. Microbes. 2019; 10: 137–47. DOI: 10.3920/BM2018.0050.

Dimidi E., Scott S.M., Whelan K. Probiotics and con-stipation: Mechanisms of action, evidence for effectiveness and utilisation by patients and health-care professionals. Proc. Nutr. Soc.2019; 79: 147–57. DOI: 10.1017/S0029665119000934.

Dimidi E., Christodoulides S., Scott S.M., Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Con-stipation. Adv. Nutr.2017; 8: 48494. DOI: 10.3945/an.116.014407.

Jadrešin O., Sila S., Trivić I. et al. Lack of Benefit of Lactobacillus reuteri DSM 17938 as an Addition to the Treatment of Functional Constipation. J. Pediatr. Gastroenterol. Nutr. 2018; 67: 763–6. DOI: 10.1097/MPG.0000000000002134.

Gomes D.O.V.S., Morais M.B. Gut microbiota and the use of probiotics in constipation in children and adolescents: Systematic review. Rev. Paul Pediatr. 2020; 38: e2018123. DOI: 10.1590/1984-0462/2020/38/2018123.

Wegh C.A.M., Benninga M.A., Tabbers M.M. Ef-fectiveness of Probiotics in Children with Functional Abdominal Pain Disorders and Functional Constipation: A Systematic Review. J. Clin. Gastroenterol.2018; 52: S10–S26. DOI: 10.1097/MCG.0000000000001054.

West C.L., Stanisz A.M., Mao Y.-K. et al. Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice. PLoS ONE. 2020; 15: e0225481. DOI: 10.1371/journal.pone.0225481.

Hojsak I. Probiotics in Functional Gastrointestinal Disorders. Adv. Exp. Med. Biol.2018; 1125: 121–37. DOI: 10.1007/5584_2018_321.

Jadrešin O., Sila S., Trivić I. et al. Lactobacillus reu-teri DSM 17938 is effective in the treatment of func-tional abdominal pain in children: Results of the double-blind randomized study. Clin. Nutr.2020; 39: 3645–51. DOI: 10.1016/j.clnu.2020.04.019.

Trivić I., Niseteo T., Jadrešin O., Hojsak I. Use of probiotics in the treatment of functional abdominal pain in children — Systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging.2021; 180: 339–51. DOI: 10.1007/s00431-020-03809-y.

Szajewska H., Guarino A., Hojsak I. et al. Use of Probiotics for the Management of Acute Gastroenteritis in Children: An Update. J. Pediatr. Gastroenterol. Nutr.2020; 71: 261–9. DOI: 10.1097/MPG.0000000000002751.

Francavilla R., Lionetti E., Castellaneta S. et al. Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea — A double-blind study. Aliment. Pharmacol. Ther.2 012 ; 3 6 : 3 6 3 – 9 . D O I : 10 .1111/ j .13 6 5 -2036.2012.05180.x.

Dinleyici E.C., Dalgic N., Guven S. et al. Lactobacillus reuteri DSM 17938 shortens acute infectious diarrhea in a pediatric outpatient setting. J. Pediatr. 2015; 91: 392–6. DOI: 10.1016/j.jped.2014.10.009.

Amoroso C., Perillo F., Strati F. et al. The Role of GutMicrobiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells.2020; 9: 1234. DOI: 10.3390/cells9051234.

Wilkins T., Sequoia J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Phys. 2017; 96: 170–8.

Shornikova A.V., Casas I.A., Mykkänen H. et al. Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr. Infect. Dis. J. 1997; 16: 1103–7. DOI: 10.1097/00006454-199712000-00002.

Shornikova A.-V., Casas I.A., Isolauri E. et al. Lactobacillus reuteri as a Therapeutic Agent in Acute Diarrhea in Young Children. J. Pediatr. Gastroente-rol. Nutr.1997; 24: 399–404. DOI: 10.1097/00005176-199704000-00008.

Dinleyici E.C., Vandenplas Y., PROBAGE Study Group. Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospita-lised children. Acta Paediatr.2014; 103: e300–e305. D O I : 10 .1111/ a p a .12 617.

Urbańska M., Gieruszczak-Białek D., Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in chil-dren. Aliment. Pharmacol. Ther. 2016; 43: 1025–34. D O I : 10 .1111/ a p t .13 5 9 0 .

Szymański H., Szajewska H. Lack of Efficacy of Lactobacillus reuteri DSM 17938 for the Treatment of Acute Gastroenteritis: A Randomized Controlled Trial. Pediatr. Infect. Dis. J. 2019; 38: e237–e242. DOI: 10.1097/INF.0000000000002355.

Margiotta G., Ferretti S., Graglia B. et al. Effect of Lactobacillus reuteri LRE02-Lactobacillus rhamnosus LR04 combination and gastrointestinal functional disorders in an Emergency Department pediatric population. Eur. Rev. Med. Pharmacol. Sci. 2021; 25: 3097–3104.

Patro-Gołąb B., Szajewska H. Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gas-troenteritis in Children. An Update. Nutrients. 2019; 11: 11. DOI: 10 . 3 3 9 0 / n u11112 76 2 .

Rojas M.A., Lozano J.M., Rojas M.X. et al. Prophy-lactic probiotics to prevent death and nosocomial infection in preterm infants. Pediatrics.2012; 130: e1113 – e112 0 . D O I : 10 .15 4 2 / p e d s . 2 011 - 3 5 8 4 .

Oncel M.Y., Sari F.N., Arayici S. et al. Lactobacillus reuteri for the prevention of necrotising enterocolitis in very low birthweight infants: a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2014; 99: F110–F115. DOI: 10.1136/archdis-child-2013-304745.

Rosenfeldt V., Benfeldt E., Nielsen S.D. et al. Effect of probiotic Lactobacillus strains in children with at-opic dermatitis. J Allergy Clin Immunol. 2003; 111(2):

–95. DOI: 10.1067/mai.2003.389. PMID: 12589361.

Miniello V.L., Brunetti L., Tesse R. et al. Lactobacillus reuteri modulates cytokines production in exhaled breath condensate of children with atopic derma-titis. J. Pediatr. Gastroenterol. Nutr.2010; 50: 573–6. DOI: 10.1097/MPG.0b013e3181bb343f.

Abrahamsson T.R., Jakobsson T., Bottcher M.F. et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J. Allergys Clin. Immunol. 2007; 119: 1174–80. DOI: 10.1016/j.jaci. 2007.01.007.

Abrahamsson T.R., Jakobsson T., Bjorksten B. et al. No effect of probiotics on respiratory allergies: a seven-year follow-up of a randomized controlled trial in infancy. Pediatr. Allergy Immunol. 2013; 24: 5 5 6 – 61. D O I : 10 .1111/ p a i .1210 4 .

Million M., Thuny F., Angelakis E. et al. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr. Diabetes. 2013; 3: e87. DOI: 10.1038/nutd.2013.28.

Chung H.J., Yu J.G., Lee I.A. et al. Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity. FEBS Open Bio 2016; 6: 64–76. DOI: 10.1002/2211-5463.12024.

Braegger C., Chmielewska A., Decsi T. et al. Supple-mentation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2011; 52: 238–50. DOI: 10.1097/

MPG.0b013e3181fb9e80.

Dore M.P., Bibbò S., Loria M. et al. Twice-a-day PPI, tetracycline, metronidazole quadruple therapy with Pylera® or Lactobacillus reuteri for treatment naïve or for retreatment of Helicobacter pylori. Two randomized pilot studies. Helicobacter. 2019; 24: e12 6 5 9 . D O I : 10 .1111/ h e l .12 6 5 9 .

Dore M.P., Cuccu M., Pes G.M. et al. Lactobacillus reuteri in the treatment of Helicobacter pylori infection. Intern. Emerg. Med. 2014; 9: 649–54. DOI: 10.1007/s11739 - 013-1013-z.

Dore M.P., Goni E., Di Mario F. Is There a Role for Probiotics in Helicobacter pylori Therapy? Gastroenterol. Clin. N. Am. 2015; 44: 565–75. DOI: 10.1016/j.gtc.2015.05.005.

Emara M.H., Elhawari S.A., Yousef S. et al. Emerging Role of Probiotics in the Management of Helicobacter pylori Infection: Histopathologic Perspectives. H e l i c o b a c t e r. 2 016 ; 21: 3 –10 . D O I : 10 .1111/ h e l .12 2 3 7.

Emara M.H., Mohamed S.Y., Abdel-Aziz H.R. Lactobacillus reuteri in management of Helicobacter pylori infection in dyspeptic patients: A double-blind placebo-controlled randomized clinical trial. Ther. Adv. Gastroenterol. 2014; 7: 4–13. DOI: 10 .117 7/175 62 8 3X135 03514 .

Buckley M., Lacey S., Doolan A. et al. The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection: A placebo-controlled, single-blind study. BMC Nutr. 2018; 4: 48. DOI: 10.1186/s40795-018-0257-4.

Опубликован
2023-11-10
Как цитировать
Новикова, В., & Магомедова, Д. (2023). ПРОБИОТИЧЕСКИЕ СВОЙСТВА ШТАММОВ LACTOBACILLUS REUTERI (L. REUTERI). Детская медицина Северо-Запада, 11(3), 36-53. https://doi.org/10.56871/CmN-W.2023.75.34.002
Раздел
Статьи