РОЛЬ КИШЕЧНОЙ МИКРОБИОТЫ В ГЕНЕЗЕ ЭПИЛЕПСИИ
Аннотация
Общепризнанно, что здоровье и благополучие макроорганизма зависят от адекватного функционирования кишечной микробиоты и мозга. Отмечено, что кишечная микробиота принимает участие в формировании функций головного мозга через различные пути и системы, включая центральную нервную систему. В такой ситуации правомочно предположить, что микробиота может быть триггером в развитии эпилепсии. Выявлены статистически значимые различия в микробном составе фекалий между больными эпилепсией и здоровыми людьми. Эпилепсия — хроническое заболевание головного мозга различной этиологии, причем у 40–60% больных причина данного недуга остается неизвестна. Показано, что диверсификация микробного пейзажа кишечника сопровождается активацией эпилептических пароксизмов. Однако состав и структура кишечного микромира настолько сложны и недостаточно изучены, что выделить определенные бактерии как наиболее «полезные» или «опасные» при эпилепсии практически невозможно. Предполагается, что чрезмерная локальная синхронизация биэлектрической активности мозга обусловлена минимальным хроническим воспалением и синдромом «дырявого кишечника» с разбалансировкой передачи сигналов по оси мозг–кишка. Основной метод лечения эпилептических пароксизмов — назначение фармацевтических препаратов. При этом у каждого третьего пациента с эпилепсией имеет место рефрактерная эпилепсия. Изучение видового разнообразия, состава и функции кишечной микробиоты у пациентов с эпилепсией, но с несколько противоречивыми результатами, указывают на наличие у них кишечного дисбиоза и на их потенциальную ценность в диагностике и контроле лечения эпилепсии, особенно при ее рефрактерной форме.
Литература
Бельмер С.В., Хавкин А.И., Алешина Е.О. Кишечная микробиота у детей: норма, нарушения, коррекция. Под редакцией С.В. Бельмера и А.И. Хавкина. Второе издание, переработанное и дополненное. М.; 2020.
Molina-Torres G., Rodriguez-Arrastia M., Roman P., Sanchez-Labraca N., Cardona D. Stress and the gut microbiota-brain axis. Behav. Pharmacol. 2019;30:187–200.
Sander J.W., Perucca E. Epilepsy and comorbidity: infections and antimicrobials usage in relation to epilepsy management. Acta Neurol Scand Suppl. 2003;180:16–22.
Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution FEMS Microbiol Rev 2008;32(5):723–35.
Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P. et al. Dynamics and Stabilization of the Human Gut Microbiome During the First Year of Life. Cell Host Microbe. 2015;17:690–703.
Khanna S., Tosh P.K. A Clinician’s Primer on the Role of the Microbiome in Human Health and Disease. Mayo Clin Proc. 2014;89:107–14.
O’Toole P.W., Jeffery I.B. Gut Microbiota and Aging. Science. 2015;350:1214–5.
Peng A., Qiu X., Lai W., Li W., Zhang L, Zhu X., He S., Duan J., Chen L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018;147:102–107.
Robertson R.C., Manges A.R., Finlay B.B., Prendergast A.J. The Human Microbiome and Child Growth — First 1000 Days and Beyond. Trends Microbiol. 2019;27(2):131–147.
Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. 10.1016/j.cell.2015.02.047.
Barber T.M., Valsamakis G., Mastorakos G., Hanson P., Kyrou I., Randeva H.S., Weickert M.O. Dietary Influences on the Microbiota-Gut-Brain Axis. Int J Mol Sci. 2021;22(7):3502.
Caputi V., Giron M.C. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson’s Disease. Int. J. Mol. Sci. 2018;19:1689.
Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry. 2013;18:666–673.
Шаповалова Н.С., Новикова В.П. Ось кишечник–мозг и ее роль в развитии функциональных гастроинтестинальных расстройств. Children’s Medicine of the North-West. 2021;9(4):33–50.
Карпеева Ю.С., Новикова В.П., Хавкин А.И. Микробиота и болезни человека. Вопросы диетологии. 2020;10(4):45–53.
Карпеева Ю.С., Новикова В.П., Хавкин А.И., Ковтун Т.А., Макаркин Д.В., Федотова О.Б. Микробиота и болезни человека: возможности диетической коррекции. Российский вестник перинатологии и педиатрии. 2020;65(5):116–125.
De Caro C., Leo A., Nesci V., Ghelardini C., di Cesare Mannelli L., Striano P., Avagliano C., Calignano A., Mainardi P., Constanti A. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci. Rep. 2019;9:13983.
Gong X., Liu X., Chen C., Lin J., Li A., Guo K., An D., Zhou D., Hong Z. Alteration of Gut Microbiota in Patients With Epilepsy and the Potential Index as a Biomarker. Front Microbiol. 2020;11:517797.
Şafak B., Altunan B., Topçu B., Eren Topkaya A. The Gut Microbiome in Epilepsy. Microb Pathog. 2020;139:103853.
Lee K., Kim N., Shim J.O., Kim G.H. Gut Bacterial Dysbiosis in Children With Intractable Epilepsy. J Clin Med. 2020;10(1):5.
Lee H., Lee S., Lee D.H., Kim D.W. A Comparison of the Gut Microbiota Among Adult Patients With Drug-Responsive and Drug-Resistant Epilepsy: An Exploratory Study. Epilepsy Res. 2021;172:106601.
Citraro R., Lembo F., De Caro C., Tallarico M., Coretti L., Iannone L.F. et al. First Evidence of Altered Microbiota and Intestinal Damage and Their Link to Absence Epilepsy in a Genetic Animal Model, the WAG/Rij Rat. Epilepsia. 2021;62:529–41.
Gong X., Cai Q., Liu X., An D., Zhou D., Luo R. et al. Gut Flora and Metabolism Are Altered in Epilepsy and Partially Restored After Ketogenic Diets. Microb Pathog. 2021;155:104899.
Eor J.Y., Tan P.L., Son Y.J., Kwak M.J., Kim S.H. Gut Microbiota Modulation by Both Lactobacillus Fermentum MSK 408 and Ketogenic Diet in a Murine Model of Pentylenetetrazole-Induced Acute Seizure. Epilepsy Res. 2021;169:106506.
Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108:16050–16055.
Булатова Е.М., Шабалов А.М., Богданова Н.М., Шилов А.И., Оганесян Э.Г., Курицина Н.С. Особенности видового состава бифидобактерий кишечной микробиоты и профиль микробного метаболизма у детей первого полугодия жизни, рожденных естественным и оперативным путем. Педиатр. 2018;9(1):11–16.
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133.
Wang H.B., Wang P.Y., Wang X., Wan Y.L., Liu Y.C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57(12):3126–35.
Warner B.B. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr. Res. 2019;85:216–224.
Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.
Neufeld K.A., Kang N., Bienenstock J., Foster J.A. Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol. 2011;4:492–494.
Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflamm. 2019;16:108.
Fattorusso A., Di Genova L., Dell’Isola G.B., Mencaroni E., Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients. 2019;11:521.
Guo R., Chen L.H., Xing C., Liu T. Pain regulation by gut microbiota: Molecular mechanisms and therapeutic potential. Br. J. Anaesth. 2019;123:637–654.
Новикова В.П., Яковенко А.Е., Воронцов П.В., Кликунова К.А., Платонова А.Г. Микробиота тонкой кишки у детей с расстройствами аутистического спектра. Экспериментальная и клиническая гастроэнтерология. 2022;2(198):5–11.
Kravtsova K., Yakovenko A., Vorontsov P., Platonova A., Novikova V., Wedlich F. Small intestine microbiota in children with autism spectrum disorders. In book: World of Microbiome. 2022.
Sampson T.R., Debelius J.W., Thron T., Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167:1469–1480.
Vogt N.M., Kerby R.L., Dill-McFarland K.A., Harding S.J., Merluzzi A.P., Johnson S.C., Carlsson C.M., Asthana S., Zetterberg H., Blennow K. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017;7:13537.
Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., Kanner R., Bencosme Y., Lee Y.K., Hauser S.L. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA. 2017;114:10713–10718.
Ding M., Lang Y., Shu H., Shao J., Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol. 2021;12:742449.
Ерофеев Н.П., Радченко В.Г., Селиверстов П.В. Клиническая физиология толстой кишки. Механизмы действия короткоцепочечных жирных кислот в норме и при патологии. СПб.; 2012.
Воронкова К.В. Эпилепсии в практике педиатра. Практика педиатра. 2015;1:54–63.
Клинические рекомендации. Эпилепсия и эпилептический статус у взрослых и детей. МЗ РФ; 2022.
Thijs R.D., Surges R., O’Brien T.J., Sander J.W. Epilepsy in Adults. Lancet. 2019;393:689–701.
Гузева О.В., Гузева В.И., Гузева В.В., Охрим И.В., Максимова Н.Е., Чокмосов М.С., Шин С.В. Результаты оценки качества лечения и жизни детей с эпилепсией. Педиатр. 2017;8(2):32–43.
Beghi E., Giussani G., Abd-Allah F.A., Abdela J., Abdelalim A., Abraha H.N. et al. Global, Regional, and National Burden of Epilepsy, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:357–75.
Dahlin M., Prast-Nielsen S. The gut microbiome and epilepsy. EBio Medicine. 2019;44:741–746.
Kobow K., Blümcke I. Epigenetics in Epilepsy. Neurosci Lett. 2018;667:40–6.
Kwan P., Arzimanoglou A., Berg A.T., Brodie M.J., Allen Hauser W., Mathern G. et al. Definition of Drug Resistant Epilepsy: Consensus Proposal by the Ad Hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51:1069–77.
Riazi K., Galic M.A., Kuzmiski J.B., Ho W., Sharkey K.A., Pittman Q.J. Microglial Activation and
TNFalpha Production Mediate Altered CNS Excitability Following Peripheral Inflammation. Proc Natl Acad Sci USA. 2008;105:17151–6.
Lum G.R., Olson C.A., Hsiao E.Y. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis. 2020;135:104576.
Medel-Matus J-S., Shin D., Dorfman E., Sankar R., Mazarati A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open. 2018;3:290–294.
Tang A.T., Choi J.P., Kotzin J.J., Yang Y., Hong C.C., Hobson N., Girard R., Zeineddine H.A., Lightle R., Moore T. et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305–310.
Xie G., Zhou Q., Qiu C.Z., Dai W.K., Wang H.P., Li Y.H., Liao J.X., Lu X.G., Lin S.F., Ye J.H., et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017;23:6164–6171.
Logsdon A.F., Erickson M.A., Rhea E.M., Salameh T.S., Banks W.A. Gut Reactions: How the Blood-Brain Barrier Connects the Microbiome and the Brain. Exp Biol Med (Maywood) 2018;243:159–65.
Obrenovich MEM. Leaky Gut, Leaky Brain? Microorganisms. 2018;6.
Rothhammer V., Borucki D.M., Tjon E.C., Takenaka M.C., Chao C.C., Ardura-Fabregat A. et al. Microglial Control of Astrocytes in Response to Microbial Metabolites. Nature. 2018;557:724–8.
Rothhammer V., Mascanfroni I.D., Bunse L., Takenaka M.C., Kenison J.E., Mayo L. et al. Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nat Med. 2016;22:586–97.
Yang L., Zhou Y., Jia H., Qi Y., Tu S., Shao A., et al. Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front Immunol. 2020;11:1818.
Moradi K., Ashraf-Ganjouei A., Tavolinejad H., Bagheri S., Akhondzadeh S. The Interplay Between Gut Microbiota and Autism Spectrum Disorders: A Focus on Immunological Pathways. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110091.
Erny D., Hrabě de Angelis A.L., Jaitin D., Wieghofer P., Staszewski O., David E. et al. Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nat Neurosci. 2015;18:965–77.
Djukic M., Mildner A., Schmidt H., Czesnik D., Brück W., Priller J. et al. Circulating Monocytes Engraft in the Brain, Differentiate Into Microglia and Contribute to the Pathology Following Meningitis in Mice. Brain. 2006;129:2394–403.
Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M. et al. The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Sci Transl Med. 2014;6:263ra158–263ra158.
Amasheh S., Fromm M., Günzel D. Claudins of Intestine and Nephron — a Correlation of Molecular Tight Junction Structure and Barrier Function. Acta Physiol (Oxf). 2011;201:133–40.
Welcome M.O. Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. Neuromolecular Med. 2019;21:205–26.
Laman J.D., Hart B.A., Power C., Dziarski R. Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation. Trends Mol Med. 2020;26:670–82.
Chow J., Mazmanian S.K. Getting the Bugs Out of the Immune System: Do Bacterial Microbiota «Fix» Intestinal T Cell Responses? Cell Host Microbe. 2009;5:8–12.
Ivanov I.I., Frutos Rde L., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B. et al. Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe. 2008;4:337–49.
Burfeind K.G., Kashama J.K., Bora B.K., Murchison C.F., Ramos-Crawford A.L., Nseka M.T. et al. Baseline Characterization of Epilepsy in an Onchocerciasis Endemic Area of the Democratic Republic of Congo. Brain Res Bull. 2019;145:45–52.
Han Y., Yang L., Liu X., Feng Y., Pang Z., Lin Y. et al. HMGB1/CXCL12-Mediated Immunity and Th17 Cells Might Underlie Highly Suspected Autoimmune Epilepsy in Elderly Individuals. Neuropsychiatr Dis Treat. 2020;16:1285–93.
Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-Cell Responses to Gut Microbiota Promote Experimental Autoimmune Encephalomyelitis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4615–22.
Mao L.Y., Ding J., Peng W.F., Ma Y., Zhang Y.H., Fan W. et al. Interictal Interleukin-17A Levels Are Elevated and Correlate With Seizure Severity of Epilepsy Patients. Epilepsia. 2013;54:e142–5.
Honda K., Littman D.R. The Microbiota in Adaptive Immune Homeostasis and Disease. Nature. 2016;535:75–84.
Kim M., Qie Y., Park J., Kim C.H. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe. 2016;20:202–14.
Gensollen T., Iyer S.S., Kasper D.L., Blumberg R.S. How Colonization by Microbiota in Early Life Shapes the Immune System. Science. 2016;352:539–44.
McCoy K.D., Ronchi F., Geuking M.B. Host-Microbiota Interactions and Adaptive Immunity. Immunol Rev. 2017;279:63–9.
Werner F-M., Coveñas R. Classical Neurotransmitters and Neuropeptides Involved in Generalized Epilepsy in a Multi-Neurotransmitter System: How to Improve the Antiepileptic Effect? Epilepsy Behav. 2017;71:124–9.
Sun Y., Su Y., Zhu W. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet. Front Microbiol. 20167:779–9.
Galland L. The Gut Microbiome and the Brain. J Med Food. 2014;17:1261–72.
Guerriero R.M., Giza C.C., Rotenberg A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr. Neurol. Neurosci. Rep. 2015;15,27.
Rana A., Musto A.E. The role of inflammation in the development of epilepsy. J. Neuroinflamm. 2018;15:144.
Scharfman H.E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 2007;7:348–354.
Lu Y., Zhang Z., Tong L., Zhou X., Liang X., Yi H. et al. Mechanisms Underlying the Promotion of 5-Hydroxytryptamine Secretion in Enterochromaffin Cells of Constipation Mice by Bifidobacterium and Lactobacillus. Neurogastroenterol Motil. 2021;33:e14082.
Donovan M.H., Tecott L.H. Serotonin and the Regulation of Mammalian Energy Balance. Front Neurosci. 2013;7:36.
Hagbom M., Hellysaz A., Istrate C., Nordgren J., Sharma S., de-Faria F.M. et al. The 5-HT(3) Receptor Affects Rotavirus-Induced Motility. J Virol. 2021;95:e0075121.
Shajib M.S., Baranov A., Khan W.I. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem Neurosci. 2017;8:920–31.
Mudd A.T., Berding K., Wang M., Donovan S.M., Dilger R.N. Serum Cortisol Mediates the Relationship Between Fecal Ruminococcus and Brain N-Acetylaspartate in the Young Pig. Gut Microbes. 2017;8:589–600.
Jurgens C.W.D., Boese S.J., King J.D., Pyle S.J., Porter J.E., Doze V.A. Adrenergic Receptor Modulation of Hippocampal CA3 Network Activity. Epilepsy Res. 2005;66:117–28.
Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O’Connor G. et al. Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. J Cell Physiol. 2017;232:2359–72.
Akyuz E., Polat A.K., Eroglu E., Kullu I., Angelopoulou E., Paudel Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021;265:118826.
Иванов Д.О., Успенский Ю.П., Гурова М.М. Микробиота, интеллект человека и метаболический синдром: патогенетические параллели. University Therapeutic Journal. 2022;2(1):6.
Lobo F., Haase J., Brandhorst S. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients. 2022;14(23):5086.
Dyńka D., Kowalcze K., Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients. 2022;14(23):5003.
Barzegar M., Afghan M., Tarmahi V., Behtari M., Rahimi Khamaneh S., Raeisi S. et al. Ketogenic Diet: Overview, Types, and Possible Anti-Seizure Mechanisms. Nutr Neurosci. 2021;24:307–16.
Amlerova J., Šroubek J., Angelucci F., Hort J. Evidences for a Role of Gut Microbiota in Pathogenesis and Management of Epilepsy. Int J Mol Sci. 2021;22(11):5576.
Ferraris C., Meroni E., Casiraghi M.C., Tagliabue A., De Giorgis V., Erba D. One Month of Classic Therapeutic Ketogenic Diet Decreases Short Chain Fatty Acids Production in Epileptic Patients. Front Nutr. 2021;8:613100.
Li D., Bai X., Jiang Y., Cheng Y. Butyrate Alleviates PTZ-Induced Mitochondrial Dysfunction, Oxidative Stress and Neuron Apoptosis in Mice via Keap1/Nrf2/HO-1 Pathway. Brain Res Bull. 2021;168:25–35.
Wang H., Lee I.S., Braun C., Enck P. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. J Neurogastroenterol Motil. 2016;22(4):589–605.
Gómez-Eguílaz M., Ramón-Trapero J.L., Pérez-Martínez L., Blanco J.R. The Beneficial Effect of Probiotics as a Supplementary Treatment in Drug-Resistant Epilepsy: A Pilot Study. Benef Microbes. 2018;9:875–81.
Bagheri S., Heydari A., Alinaghipour A., Salami M. Effect of Probiotic Supplementation on Seizure Activity and Cognitive Performance in PTZ-Induced Chemical Kindling. Epilepsy Behav. 2019;95:43–50.
He Z., Cui B-T., Zhang T., Li P., Long C-Y., Ji G-Z. Fecal microbiota transplantation cured epilepsy in a case with Crohn’’s disease: The first report. World J Gastroenterol. 2017;23(19):3565–8.
Yeom J.S., Park J.S., Kim Y-S., Kim R.B., Choi D-S., Chung J-Y., Han T-H., Seo J-H., Park E.S., Lim J-Y. Neonatal seizures and white matter injury: Role of rotavirus infection and probiotics. Brain Dev. 2019;41:19–28.
Braakman HMH., van Ingen J. Can epilepsy be treated by antibiotics? J Neurol. 2018;265(8):1934–6.
Imani S., Buscher H., Marriott D., Gentili S., Sandaradura I. Too Much of a Good Thing: A Retrospective Study of β-Lactam Concentration–Toxicity Relationships. J Antimicrobial Chemotherapy. 2017;72:2891–7.
Ianiro G., Tilg H., Gasbarrini A. Antibiotics as Deep Modulators of Gut Microbiota: Between Good and Evil. Gut. 2016;65:1906–15.
Jakobsson H.E., Jernberg C., Andersson A.F., Sjölund-Karlsson M., Jansson J.K., Engstrand L. Short-Term Antibiotic Treatment has Differing Long-Term Impacts on the Human Throat and Gut Microbiome. PLoS One. 2010;5:e9836.
Korpela K., Salonen A., Virta L.J., Kekkonen R.A., Forslund K., Bork P. et al. Intestinal Microbiome Is Related to Lifetime Antibiotic Use in Finnish Pre-School Children. Nat Commun. 2016;7:10410.
Raymond F., Ouameur A.A., Déraspe M., Iqbal N., Gingras H., Dridi B. et al. The Initial State of the Human Gut Microbiome Determines Its Reshaping by Antibiotics. ISME J. 2016;10:707–20.
Jeffery I.B., Lynch D.B., O'Toole PW. Composition and Temporal Stability of the Gut Microbiota in Older Persons. Isme J. 2016;10:170–82.
Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61:246.