LEFT VENTRICULAR HYPERTROPHY IN TERMS OF SUDDEN CARDIAC DEATH

  • A.V. Barsukov LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • E.V. Borisova LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • M.S. Didenko LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • S.A. Glebova LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • A.V. Airapetyan LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • M.L. Ligidov LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • S.D. Rud Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044
  • E.I. Asaturova LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
  • I.I. Konovalova LLC “KardioKlinika”. Kuznetsovskaya str., 25, Saint-Petersburg, Russian Federation, 196105
Keywords: sudden cardiac death; left ventricular hypertrophy; risk stratifi cation; ejection fraction; mechanism; subpopulation

Abstract

Sudden cardiac death (SCD) is one of the dominant causes of death in the modern world, which continues to be a serious medical and social problem for the healthcare system and society as a whole. The current risk stratification of patients in the aspect of primary prevention of SCD is based mainly on the left ventricular ejection fraction (LVEF), the value of which is 35 % or less is the decisive argument for the implantation of a cardioverter-defibrillator (ICD). However, this approach alone is accompanied by a relatively low frequency of ICD triggering to suppress life-threatening ventricular arrhythmias. The vast majority of patients who die suddenly have an LVEF > 35 % in vivo, which indicates the need for a better understanding of the mechanisms underlying SCD. Additional variables are important that, independently or in combination with low LVEF, may improve SCD prediction. Left ventricular hypertrophy (LVH) of any etiology is a strong
independent risk factor for SCD. Not only concentric and eccentric LVH variants, but also concentric LV remodeling without hypertrophy are associated with increased lethality. The article summarizes current ideas about the pathophysiology of LVH, provides a review of publications that reveal the mechanisms of the relationship between LVH and SCD in various subpopulations of cardiovascular patients. The value of LVH as a risk stratifier of sudden lethality is shown, regardless of the contractility of myocardium.

References

Al-Khatib S.M., Stevenson W.G., Ackerman M.J. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2018; 138(13): e210–71. DOI: 10.1161/CIR.0000000000000548.

Kober L., Thune J.J., Nielsen J.C. et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016; 375(13): 1221–30. DOI: 10.1056/NEJMoa1608029.

Basso C., Aguilera B., Banner J. et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017; 471(6): 691–705. DOI: 10.1007/s00428-017-2221-0.

Giamouzis G., Dimos A., Xanthopoulos A. et al. Left ventricular hypertrophy and sudden cardiac death. Heart Fail Rev. 2022; (2): 711–24. DOI: 10.1007/s10741-021-10134-5.

Kahan T., Bergfeldt L. Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart (Bri­tish Cardiac Society). 2005; 91(2): 250–6. DOI: 10.1136/hrt.2004.042473.

Vakili B.A., Okin P.M., Devereux R.B. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001; 141(3): 334–41. DOI: 10.1067/mhj.2001.113218.

Haider A.W., Larson M.G., Benjamin E.J. et al. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998; 32(5): 1454–9. DOI: 10.1016/s0735-1097(98)00407-0.

Ferdinand K.C., Maraboto C. Is electrocardiography-left ventricular hypertrophy an obsolete marker for determining heart failure risk with hypertension? J Am Heart Assoc. 2019; 8(8): e012457. DOI: 10.1161/JAHA.119.012457.

Agabiti E., France M.A., Uk A.D. et al. ESC/ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension. Eur Heart J. 2018; 39(33): 3021–3104. DOI: 10.1097/HJH.0000000000001940.

Kawel-Boehm N., Hetzel S.J., Ambale-Venkatesh B. et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020; 22(1): 87. DOI: 10.1186/s12968-020-00683-3.

Nakamura M., Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7): 387–407. DOI: 10.1038/s41569-018-0007-y.

Triposkiadis F., Xanthopoulos A., Butler J. Cardiovascular aging and heart failure: JACC review topic of the Week. J Am Coll Cardiol. 2019; 74(6): 804–13. DOI: 10.1016/j.jacc.2019.06.053.

Niederseer D., Rossi V.A., Kissel C. et al. Role of echocardiography in screening and evaluation of athletes. Heart 2020; heartjnl-2020-317996. DOI: 10.1136/heartjnl-2020-317996.

Olah A., Németh B.T., Mátyás C. et al. Physiological and pathological left ventricular hypertrophy of comparable degree is associated with characteristic diffe­rences of in vivo hemodynamics. Am J Physiol Heart Circ Physiol. 2016; 310(5): H587–97. DOI: 10.1152/ajpheart.00588.2015.

Cunningham K.S., Spears D.A., Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic sciences research. 2019; 4(3): 223–40. DOI: 10.1080/20961790.2019.1633761.

Katz A.M., Rolett E.L. Heart failure: when form fails to follow function. Eur Heart J. 2016; 37(5): 449–54. DOI: 10.1093/eurheartj/ehv548.

Barsukov A.V., Glukhovskoĭ D.V., Zobnina M.P. et al. Left ventricular hypertrophy as a marker of adverse cardiovascular risk in persons of various age groups. Adv Gerontol. 2014; 27(4): 763–70. PMID: 25946857.

Kuznetsov V.A., Yaroslavskaya E.I., Zyrianov I.P. et al. Asymmetric septal hypertrophy in patients with co­ronary artery disease. Eur J Echocardiogr. 2010; 11(8): 698–702. DOI: 10.1093/ejechocard/jeq046.

Barsukov A., Shoustov S., Resvantzev M., Pronina E. Asymmetrical left ventricle hypertrophy in essential hypertension: echocardiographic data. J Hypertens. 2007; 25 (suppl. 2): S99.

Finocchiaro G., Dhutia H., Gray B. et al. Diagnostic yield of hypertrophic cardiomyopathy in first-degree relatives of decedents with idiopathic left ventricular hypertrophy. Europace. 2020; 22(4): 632–42. DOI: 10.1093/europace/euaa012.

Tseng Z.H., Olgin J.E., Vittinghoff E. et al. Prospective countywide surveillance and autopsy characterization of sudden cardiac death: POST SCD study. Circulation. 2018; 137(25): 2689–2700. DOI: 10.1161/CIRCULATIONAHA.117.033427.

Aurigemma G.P., de Simone G., Fitzgibbons T.P. Cardiac remodeling in obesity. Circ Cardiovasc Ima­ging. 2013; 6(1): 142–52. DOI: 10.1161/CIRCIMAGING.111.964627.

Kannel W.B., Wilson P.W., D’Agostino R.B. et al. Sudden coronary death in women. Am Heart J. 1998; 136(2): 205–12. DOI: 10.1053/hj.1998.v136.90226.

Holkeri A., Eranti A., Haukilahti M.A.E. et al. Predic­ting sudden cardiac death in a general population using an electrocardiographic risk score. Heart. 2020; 106(6): 427–33. DOI: 10.1136/heartjnl-2019-315437.

Konety S.H., Koene R.J., Norby F.L. et al. Echocardiographic predictors of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. Circ Cardiovasc Imaging. 2016; 9(8). DOI: 10.1161/CIRCIMAGING.115.004431.

Laukkanen J.A., Khan H., Kurl S. et al. Left ventricular mass and the risk of sudden cardiac death: a po­pulation-based study. J Am Heart Assoc. 2014; 3(6): e001285. DOI: 10.1161/JAHA.114.001285.

Verdecchia P., Angeli F., Cavallini C. et al. Sudden cardiac death in hypertensive patients. Hypertension. 2019; 73(5): 1071–8. DOI: 10.1161/HYPERTENSIONAHA.119.12684.

Okin P.M., Angeli F., Cavallini C. et al. Relationship of sudden cardiac death to new-onset atrial fibrillation in hypertensive patients with left ventricular hypertrophy. Circ Arrhythm Electrophysiol. 2013; 6(2): 243–51. DOI: 10.1161/HYPERTENSIONAHA.119.12684.

Turakhia M.P., Schiller N.B., Whooley M.A. Prognostic significance of increased left ventricular mass index to mortality and sudden death in patients with stable coronary heart disease (from the Heart and Soul Study). Am J Cardiol. 2008; 102(9): 1131–5. DOI: 10.1016/j.amjcard.2008.06.036.

Khalid K., Padda J., Ismail D. et al. Correlation of coronary artery disease and left ventricular hypertrophy. Cureus. 2021; 13(8): e17550. DOI: 10.7759/cureus.17550.

Liao Y., Cooper R.S., McGee D.L. et al. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA. 1995; 273(20): 1592–7.

Baumgartner H., Falk V., Bax J.J. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017; 38(36): 2739–91. DOI: 10.1093/eurheartj/ehx391.

Prejean S.P., Camacho R., Wang B. et al. Review of Published Cases of Syncope and Sudden Death in Patients With Severe Aortic Stenosis Documented by Electrocardiography. Am J Cardiol. 2021; 148: 124–9. DOI: 10.1016/j.amjcard.2021.02.023.

Minners J., Rossebo A., Chambers J.B. et al. Sudden cardiac death in asymptomatic patients with aortic stenosis. Heart. 2020; 106(21): 1646–50. DOI: 10.1136/heartjnl-2019-316493.

Spirito P., Bellone P., Harris K.M. et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2020; 342(24): 1778–85. DOI: 10.1056/NEJM200006153422403.

Miron A., Lafreniere-Roula M., Steve Fan C.P. et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation. 2020; 142(3): 217–29. DOI: 10.1161/CIRCULATIONAHA.120.047235.

Gilstrap L.G., Dominici F., Wang Y. et al. Epidemiology of cardiac amyloidosis associated heart failure hospita­lizations among fee-for-service medicare beneficiaries in the United States. Circ Heart Fail. 2019; 12(6): e005407. DOI: 10.1161/CIRCHEARTFAILURE.118.005407.

Maurer M.S., Hanna M., Grogan M. et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Car­diol. 2016; 68(2): 161–72. DOI: 10.1016/j.jacc.2016.03.596.

Orini M., Graham A.J., Martinez-Naharro A. et al. Noninvasive mapping of the electrophysiological substrate in cardiac amyloidosis and its relationship to structural abnormalities. J Am Heart Assoc. 2019; 8(18): e012097. DOI: 10.1161/JAHA.119.012097.

Mlcochova H., Saliba W.I., Burkhardt D.J. et al. Catheter ablation of ventricular fibrillation storm in patients with infiltrative amyloidosis of the heart. J Cardiovasc Electrophysiol. 2016; 17(4): 426–30. DOI: 10.1111/j.1540-8167.2005.00321.x.

John R.M., Stern D.L. Use of implantable electronic devices in patients with cardiac amyloidosis. Can J Cardiol. 2020; 36(3): 408–15. DOI: 10.1016/j.cjca.2019.12.002.

Azevedo O., Cordeiro F., Gago M.F. et al. Fabry disease and the heart: a comprehensive review. Int J Mol Sci. 2021; 22(9): 4434. DOI: 10.3390/ijms22094434.

Higashi H., Yamagata K., Noda T. et al. Endocardial and epicardial substrates of ventricular tachycardia in a patient with Fabry disease. Heart Rhythm. 2011; 8(1): 133–6. DOI: 10.1016/j.hrthm.2010.08.006.

Linhart A., Germain D.P., Olivotto I. et al. An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur J Heart Fail. 2020; 22(7): 1076–96. DOI: 10.1002/ejhf.1960.

Quiñones M.A., Greenberg B.H., Kopelen H.A. et al. Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. Studies of Left Ventricular Dysfunction. J Am Coll Cardiol. 2000; 35(5): 1237–44. DOI: 10.1016/s0735-1097(00)00511-8.

Reinier K., Dervan C., Singh T. et al. Increased left ventricular mass and decreased left ventricular systolic function have independent pathways to ventricular arrhythmogenesis in coronary artery disease. Heart Rhythm. 2011; 8(8): 1177–82. DOI: 10.1016/j.hrthm.2011.02.037.

Phan D., Aro A.L., Reinier K. et al. Left ventricular geo­metry and risk of sudden cardiac arrest in patients with severely reduced ejection fraction. J Am Heart Assoc. 2016; 5(8): e003715. DOI: 10.1161/JAHA.116.003715.

Vaduganathan M., Claggett B.L., Chatterjee N.A. et al. Sudden death in heart failure with preserved ejection fraction: a competing risks analysis from the TOPCAT trial. JACC Heart Fail. 2018; 6(8): 653–61. DOI: 10.1016/j.jchf.2018.02.014.

Chan M.M., Lam C.S. How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail. 2013; 15(6): 604–13. DOI: 10.1093/eurjhf/hft062.

Vaduganathan M., Patel R.B., Michel A. et al. Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2017; 69(5): 556–69. DOI: 10.1016/j.jacc.2016.10.078.

Yazdanfard P.D. Christensen A.H., Tfelt-Hansen J. et al. Non-diagnostic autopsy findings in sudden unexplained death victims. BMC Cardiovasc Disord. 2020; 20(1): 58. DOI: 10.1186/s12872-020-01361-z.

Smith D.L., Haller J.M., Korre M. et al. Pathoanatomic findings associated with duty-related cardiac death in US freighters: a case-control study. J Am Heart Assoc. 2018; 7(18): e009446. DOI: 10.1161/JAHA.118.009446.

Dennis M., Elder A., Semsarian C. et al. A 10-year review of sudden death during sporting activities. Heart Rhythm. 2018; 15(10): 1477–83. DOI: 10.1016/j.hrthm.2018.04.019.

Huynh N., Thordsen S., Thomas T. et al. Clinical and pathologic findings of aortic dissection at autopsy: review of 336 cases over nearly 6 decades. Am Heart J. 2019; 209: 108–15. DOI: 10.1016/j.ahj.2018.11.006.

Adabag A.S., Peterson G., Apple F.S. et al. Etiology of sudden death in the community: results of anatomical, metabolic, and genetic evaluation. Am Heart J. 2010; 159(1): 33–9. DOI: 10.1016/j.ahj.2009.10.019.

Chatterjee S., Bavishi C., Sardar P. et al. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am J Cardiol. 2014; 114(7): 1049–52. DOI: 10.1016/j.amjcard.2014.07.015.

Nadarajah R., Patel P.A., Tayebjee M.H. Is hypertensive left ventricular hypertrophy a cause of sustained ventri­cular arrhythmias in humans? J Hum Hypertens. 2021.

Stevens S.M., Reinier K., Chugh S.S. Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circ Arrhythm Electrophysiol. 2013; 6(1): 212–7. DOI: 10.1161/CIRCEP.112.974931.

Shenasa M., Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol. 2017; 237: 60–3. DOI: 10.1016/j.ijcard.2017.03.002.

Tin L.L., Beevers D.G., Lip G.Y. Hypertension, left ventricular hypertrophy, and sudden death. Curr Car­diol Rep. 2002; 4(6): 449–57. DOI: 10.1007/s11886-002-0105-6.

Stroumpoulis K.I., Pantazopoulos I.N., Xanthos T.T. Hypertrophic cardiomyopathy and sudden cardiac death. World J Cardiol. 2010; 2(9): 289–98. DOI: 10.4330/wjc.v2.i9.289.

Yang K.C., Kyle J.W., Makielski J.C. et al. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res. 2015; 116(12): 1937–55. DOI: 10.1161/CIRCRESAHA.116.304691.

Rubart M., Zipes D.P. Mechanisms of sudden car­diac death. J Clin Invest. 2005; 115(9): 2305–15. DOI: 10.1172/JCI26381.

Published
2024-03-15
How to Cite
Barsukov, A., Borisova, E., Didenko, M., Glebova, S., Airapetyan, A., Ligidov, M., Rud, S., Asaturova, E., & Konovalova, I. (2024). LEFT VENTRICULAR HYPERTROPHY IN TERMS OF SUDDEN CARDIAC DEATH. Medicine: Theory and Practice, 8(3), 44-59. https://doi.org/10.56871/MTP.2023.95.29.005
Section
Статьи

Most read articles by the same author(s)