USING MACHINE LEARNING ALGORITHMS TO PREVENT THE RISK OF MATERNAL COMPLICATIONS DURING PREGNANCY

  • I.P. Vikhrov Tashkent Pediatric Medical Institute. 223 J. Abidova, Tashkent 100140 Republic of Uzbekistan https://orcid.org/0000-0002-4333-8533
  • Sh.P. Ashirbaev Tashkent Pediatric Medical Institute. 223 J. Abidova, Tashkent 100140 Republic of Uzbekistan
  • Sh.T. Iskandarova Tashkent Pediatric Medical Institute. 223 J. Abidova, Tashkent 100140 Republic of Uzbekistan
  • K.M. Daminova Tashkent Pediatric Medical Institute. 223 J. Abidova, Tashkent 100140 Republic of Uzbekistan
Keywords: machine learning, digitalization, maternal health, Random Forest, online survey

Abstract

The publication presents the results of the drafting, analysis of the use of artificial intelligence technologies in the sphere of healthcare on the example of determining the risk of maternal complications during pregnancy, as well as the results of an online survey of women of reproductive age in the Republic of Uzbekistan for the use of the developed mobile application during pregnancy. Data processing methods were used using built-in Python libraries with automatic statistical data processing modules, and an online survey was conducted by means of Google Forms. The results showed high accuracy in predicting pregnancy complications. This research contributes to the digitalization of healthcare in general and helps to early identification of risks to maternal health. The analysis showed that blood glucose levels, age and blood pressure may significantly affect the health of pregnant women. Based on these data, a random forest model was built with an accuracy of 92.15%. In addition, digital medical products have been developed, and the survey demonstrated a willingness to use mobile applications to examine health status. The survey showed that 84.4% of women are ready to use a mobile app during pregnancy, and more than 60% of them even with a paid subscription. The developed digital software product in the form of a mobile application using machine learning algorithms is an alternative approach of preventing maternal complications during pregnancy in women.

References

База данных материнского риска в портале открытых данных Kaggle.com. Доступно по: https://www.kaggle.com/datasets/csafrit2/maternal-health-risk-data (дата обращения: 28.10.2023).

Вихров И.П. Оптимизация использований технологий больших данных и искусственного интеллекта в Республике Узбекистан. Автореф. дис. … канд. мед. наук. Ташкент; 2023.

Даминова К., Искандарова Ш. Профилактика риска материнских осложнений при беременности с помощью машинного обучения. Современные проблемы охраны окружающей среды и общественного здоровья. Ташкент. 2023; 1(1): 20–2. Доступно по https://inlibrary.uz/index.php/environmental-protection/article/view/19506 (дата обращения: 25.10.2023).

Мониторинг внедрения цифрового здравоохранения: обзор отдельных национальных и международных методологических подходов. Копенгаген: Европейское региональное бюро ВОЗ; 2022.

Официальный сайт Агентства по статистике Республике Узбекистан. Коэффициент материнской смертности. Доступен по: https://stat.uz/ru/ofitsialnaya-statistika/demography (дата обращения 27.10.2023).

Системная работа для обеспечения поддержки и внедрения изменений: цифровое здравоохранение в Европейском регионе ВОЗ, 2023 г. Копенгаген: Европейское региональное бюро ВОЗ; 2023.

Тенденции материнской смертности 2000–2020 гг.: оценки ВОЗ, ЮНИСЕФ, ЮНФПА, Группы Всемирного банка и Отдел народонаселения ДЭСВ ООН. Резюме. Женева: Всемирная организация здравоохранения; 2023.

Ahmed M., Kashem M.A. IoT Based Risk Level Prediction Model For Maternal Health Care In The Context Of Bangladesh. In: 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI). Dhaka. Bangladesh; 2020: 1–6. Available at: DOI: 10.1109/STI50764.2020.9350320 (accessed 27.10.2023).

Ahmed M., Kashem M.A., Rahman M., Khatun S. Review and Analysis of Risk Factor of Maternal Health in Remote Area Using the Internet of Things (IoT). In: Kasruddin Nasir A. et al (eds). InECCE2019. Lecture Notes in Electrical Engineering. Singapore. Springer. 2020; 632: 357–65. DOI: 10.1007/978-981-15-2317-5_30.

Cresswell K., Anderson S., Montgomery C. et al. Eva­luation of Digitalisation in Healthcare and the Quantification of the “Unmeasurable”. Journal of General Internal Medicine. 2023; 38(16): 3610–5. Available at: https://doi.org/10.1007/s11606-023-08405-y (accessed 27.10.2023). DOI: 10.1007/s11606-023-08405-y.

Robinson S., Recheet B. WHO Report: Health Systems in Action Insight for Uzbekistan. Division of Country Health Policies and Systems. WHO Regional Office for Europe. 2022: 7–14.

Santhi V., Ramya K., Tarana A.P.J., Vinitha G. IOT based wearable health monitoringsystem for pregnant ladies using CC 3200. International Journal of Advanced Research Methodology in Engineering &Technology. 2017; 1(3): 56–60.

Published
2024-07-23
How to Cite
Vikhrov, I., Ashirbaev, S., Iskandarova, S., & Daminova, K. (2024). USING MACHINE LEARNING ALGORITHMS TO PREVENT THE RISK OF MATERNAL COMPLICATIONS DURING PREGNANCY. Medicine and Organization of Health Care, 9(1), 52-58. https://doi.org/10.56871/MHCO.2024.69.20.005
Section
Статьи