RATIONALE FOR USE OF WHOLE-BODY CRYOTHERAPY AND LOW BODY NEGATIVE PRESSURE DEVICE FOR PREVENTION OF OVERTRAINING SYNDROME

  • N.D. Mamiev Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • V.S. Vasilenko Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • E.B. Karpovskaya Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • Yu.B. Semenova Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • N.S. Kanavets Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • B.I. Zaripov Mariinsky Hospital. Liteyny ave., 56, Saint Petersburg, Russian Federation, 191014
  • E.N. Hasanova Medical and sanitary unit No 70 of Saint-Petersburg State Unitary Enterprise “Passazhiravtotrans”. Komsomola str., 12, Saint Petersburg, Russian Federation, 195009
Keywords: overtraining syndrome; cardiovascular system; low body negative pressure device; whole-body cryotherapy; athletes

Abstract

Introduction. Further improvement of the effectiveness of the training process is possible as a result of the application of new approaches that optimize the training effects. Preventive measures remain the only way to combat overtraining syndrome. Special importance is attached to measures that accelerate recovery immediately after training. Moreover, the recovery methods should be different for different sports. The aim of the study was to study the effectiveness of low body negative pressure device and whole-body cryotherapy for the prevention of overstrain and overtraining syndrome in athletes in sports with predominant endurance development. Materials and methods. 67 athletes, representatives of cyclic sports, were included in the study for two years. At the first stage, of low body negative pressure device and whole-body cryotherapy were not used for post-exercise recovery of athletes. At the second stage, of low body negative pressure device and whole-body cryotherapy were introduced into the training process. Before and after the 10-day course, as well as upon completion of the control and experimental stages, clinical, biochemical and immunological studies were conducted in athletes. Results. According to the comparative analysis, the multidirectional effect of low body negative pressure device and whole-body cryotherapy on the indicators of the adaptive potential of athletes against the background of high physical exertion has been established. Low body negative pressure device had a positive effect on the adaptive potential of the cardiovascular system by reducing the level of endogenous intoxication and normalizing metabolic processes. Whole-body cryotherapy increased the adaptive potential of the cardiovascular system to a lesser extent, but at the same time, due to the stimulation of cellular immunity, it reduced the incidence of acute respiratory viral infections. Conclusions. The results of the study can be used to increase the adaptive potential and effective post-exercise recovery in cyclical sports athletes. Research in this direction will be continued to identify the possibility of the combined use of low body negative pressure device and whole-body cryotherapy in the training process of athletes.

References

Абросимова Л.И., Архангельская И.А., Аулик И.В. и др. Детская спортивная медицина. М.: Медицина; 1991.

Алексеев В.В., Алипов А.Н., Андреев В.А. и др. Медицинские лабораторные технологии. Том 2. М.: ГЭОТАР-Медиа; 2013.

Василенко В.С., Мамиев Н.Д., Семенова Ю.Б., Карповская Е.Б. Использование криотерапии для повышения стрессоустойчивости спортсменок в групповых видах гимнастики. Педиатр. 2021; 12(2): 43–52. DOI: 10.17816/PED12243-52.

Василенко В.С., Семенова Ю.Б. Патогенетические механизмы развития стрессорной кардиомиопатии у высококвалифицированных спортсменов. Педиатр. 2013; 4(2): 57–61. DOI: 10.17816/PED4257-61.

Мамиев Н.Д., Василенко В.С., Семенова Ю.Б. Распространенность и структура нарушения ритма сердца у спортсменов в циклических видах спорта. Медицина: теория и практика. 2023; 8(1): 35–40. DOI: 10.56871/MTP.2023.59.63.004.

Потапова Е.А., Земляной Д.А., Антонов А.А. и др. Влияние самоизоляции на режим дня и тренировок спортсменов подростков. Медицина и организация здравоохранения. 2020; 5(4): 34–43.

Abaïdia A., Dupont G. Recovery strategies for football players. Swiss Sports & Exercise Medicine. 2018; 66(4): 28–36.

Banfi G., Lombardi G., Colombini A., Melegati G. Whole-body cryotherapy in athletes. Sports Med. 2010; 40(6): 509–17. DOI: 10.2165/11531940-000000000-00000.

Bell L., Ruddock A., Maden-Wilkinson T. et al. “Is It Overtraining or Just Work Ethic?”: Coaches’ Perceptions of Overtraining in High-Performance Strength Sports. Sports (Basel). 2021; 9(6): 85. DOI: 10.3390/sports9060085.

Bell L., Ruddock A., Maden-Wilkinson T., Rogerson D.J. Overreaching and overtraining in strength sports and resistance training: A scoping review. Sports Sci. 2020; 38(16): 1897–1912. DOI: 10.1080/02640414.2020.1763077.

Bettoni L., Bonomi F.G., Zani V. et al. Effects of 15 consecutive cryotherapy sessions on the clinical output of fibromyalgic patients. Clin. Rheumatol. 2013; 32: 1337–45. DOI: 10.1007/s10067-013-2280-9.

Biffi A., Maron B., Culasso F. et al. Patterns of ventri­cular tachyarrhythmias associated with training, deconditioning and retraining in elite athletes without cardiovascular abnormalities. Am. J. Cardiol. 2011; 107: 697–703. DOI: 10.1016/j.amjcard.2010.10.049.

Chang C., Putukian M., Aerni G. et al. Mental health issues and psychological factors in athletes: detection, management, effect on performance and prevention: American Medical Society for Sports Medicine Position Statement-Executive Summary. Br J Sports Med. 2020; 54(4): 216–20. DOI: 10.1136/bjsports-2019-101583.

Chena M., Rodríguez M.L., Bores A.J., Ramos-Campo D.J. Effects of a multifactorial injuries prevention program in young Spanish football players. J Sports Med Phys Fitness. 2019; 59(8): 1353–62. DOI: 10.23736/S0022-4707.19.09219-3.

Chung Y., Hsiao Y.-T., Huang W.C. Physiological and Psychological Effects of Treadmill Overtraining Implementation. Biology (Basel). 2021; 10(6): 515. DOI: 10.3390/biology10060515.

DeBlauw J.A., Crawford D.A., Kurtz B.K. et al. Eva­luating the Clinical Utility of Daily Heart Rate Variability Assessment for Classifying Meaningful Change in Testosterone-to-Cortisol Ratio: A Preliminary Study. Int J Exerc Sci. 2021; 14(3): 260–73.

Flavio A. Cadegiani, Claudio E. Kater. Basal Hormones and Biochemical Markers as Predictors of Overtraining Syndrome in Male Athletes: The EROS-

BASAL Study. Journal of Athletic Training. 2019; 54(8): 906–14. DOI: 10.4085/1062-6050-148-18.

Fonda B., Sarabon N. Effects of Intermittent Lower-Body Negative Pressure on Recovery After Exercise-Induced Muscle Damage. Int J Sports Physiol Perform. 2015; 10(5): 581–6. DOI: 10.1123/ijspp.2014-0311.

Furmanek M.P., Slomka K., Juras G. The effects of cryotherapy on proprioception system. Biomed. Res. Int. 2014; 2014: 696397. DOI: 10.1155/2014/696397.

Guimarães T.T., Terra R., Dutra P.M.L. Chronic effects of exhausting exercise and overtraining on the immune response: Th1 and Th2 profile. Motricidade. 2017; 13(3): 69–78. DOI: 10.6063/motricidade.10049.

Hausswirth C., Louis J., Bieuzen F. et al. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS ONE. 2011; 6(12): e27749. DOI: 10.1371/journal.pone.0027749.

Hohenauer E., Taeymans J., Baeyens J-P. et al. The Effect of Post-Exercise Cryotherapy on Recovery Cha­racteristics: A Systematic Review and Meta-Analysis. Plos One. 2015; 10(9): e0139028. DOI: 10.1371/journal.pone.0139028.

Hui-hui D., Bing-hong G., Huan Z., Sheng-tao Y. The effects of lower limb intermittent negative pressure therapy on the skin microcirculation perfusion of quadriceps in male rowers. CJAP. 2019; 35(2): 126–9. DOI: 10.12047/j.cjap.5727.2019.028.

Joro R., Uusitalo A., DeRuisseau K.C., Atalay M. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: A case-control study. J Sports Sci. 2017; 35(23): 2342–9. DOI: 10.1080/02640414.2016.1266379.

Kim H-G., Cheon E-J., Bai D-S. et al. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018; 15(3): 235–45. DOI: 10.30773/pi.2017.08.17.

Laza V. Cryotherapy in athletes. Health, Sports & Rehabilitation Medicine. 2019; 20(2): 85–91. DOI: 10.26659/pm3.2019.20.2.85.

Lee E.C., Fragala M.S., Kavouras S.A. et al. Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. J Strength Cond Res. 2017; 31(10): 2920–37. DOI: 10.1519/JSC.0000000000002122.

Lombardi G., Ziemann E., Banfi G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front Physiol. 2017; 8: 258. DOI: 10.3389/fphys.2017.00258.

Maior A.S., Tannure M., Eiras F., de Sá Ferreira A. Effects of intermittent negative pressure and active recovery therapies in the post-match period in elite soccer players: A randomized, parallel arm, comparative study. Biomedical Human Kinetics. 2020; 12: 59–68, DOI: 10.2478/bhk-2020-0008.

Mangine G.T., Van Dusseldorp T.A., Feito Y., et al. Testosterone and Cortisol Responses to Five High-Intensity Functional Training Competition Workouts in Recreationally Active Adults. Sports (Basel). 2018; 6(3): 62. DOI: 10.3390/sports6030062.

Medina-Leyte D.J., Zepeda-García O., Domínguez-Pérez M. et al. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int J Mol Sci. 2021; 22(8): 3850. DOI: 10.3390/ijms22083850.

Mila-Kierzenkowska C., Jurecka A., Woźniak A. et al. The effect of submaximal exercise preceded by single whole-body cryotherapy on the markers of oxidative stress and inflammation in blood of volleyball players. Oxid Med Cell Longev. 2013; 2013: 409567. DOI: 10.1155/2013/409567.

Nasi M., Bianchini E., Lo Tartaro D. et al. Effects of whole-body cryotherapy on the innate and adaptive immune response in cyclists and runners. Immunol Res. 2020; 68(6): 422–35. DOI: 10.1007/s12026-020-09165-1.

Novak J., Zorzi A., Castelletti S. et al. Electrocardiographic differentiation of idiopathic right ventricular outflow tract ectopy from early arrhythmogenic right ventricular cardiomyopathy. Europace. 2017; 19: 622–8. DOI: 10.1093/europace/euw018.

Osadchaya O.I., Futorny S.M., Shmatova E.A. Features of changes in the cytokine status in athletes depending on the level of physical activity. Sports Medicine. 2016; 1: 57–63 (in Russian).

Partridge E.M., Cooke J., McKune A., Pyne D.B. Whole-Body Cryotherapy: Potential to Enhance Athlete Preparation for Competition? Front Physiol. 2019; 10: 1007. DOI: 10.3389/fphys.2019.01007.

Rakhmanov R.S., Bogomolova E.S., Khayrov R.Sh. Estimation of the diet and metabolic status of hokkey players with different body mass. Voprosy pitaniia [Problems of Nutrition]. 2019; 88(4): 57–65. DOI: 10.24411/0042-8833-2019-10042. (in Russian).

Rose C., Edwards K.M., Siegler J. et al. Whole-body Cryotherapy as a Recovery Technique after Exercise: A Review of the Literature. Int J Sports Med. 2017; 38(14): 1049–60. DOI: 10.1055/s-0043-114861.

Russell J.M., Birch M.J., Love P.T. et al. The effects of a single whole-body cryotherapy exposure on physiological, performance, and perceptual responses of professional academy soccer players after repeated sprint exercise. J. Strength Cond. Res. 2017; 31: 415–21. DOI: 10.1519/JSC.0000000000001505.

Скопичев В.Г., Жичкина Л.В. Физиологические основы детоксикации. СПб.; 2012: 460.

Sutkowy P., Augustynska B., Wozniak A., Rakowski A. Physical exercise combined with whole-body cryotherapy in evaluating the level of lipid peroxidation products and other oxidant stress indicators in kayakers. Oxid. Med. Cell. Longev. 2014; 2014: 402631. DOI: 10.1155/2014/402631.

van Rensburg A.J., Janse van Rensburg D.C., van Buuren H.E. et al. The use of negative pressure wave treatment in athlete recovery. South African Sports Medicine Association. 2017; 29: 1–7. DOI: 10.17159/2078-516X/2017/v29i0a1544.

Varghese D.S., Ali B.R. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Di­seases: A Comprehensive Review. Front Cell Dev Biol. 2021; 9: 674103. DOI: 10.3389/fcell.2021.674103.

Vasilenko V.S., Mamiev N.D. Prevention of cardiovascular system adaptation failure in athletes with the method of abdominal decompression. Sechenov medical journal. 2017; 3(29): 25–31.

Vasilenko V.S., Mamiev N.D. Semenova Y.B. Prevention of cardiovascular system adaptation failure in athletes with the method of cryotherapy. Pediatrician. 2018; 9(6): 83–92. DOI: 10.17816/PED9683-92.

Wehrens X.H., Chiang D.Y., Li N. Chronic exercise: a contributing factor to atrial fibrillation? J. Am. Coll. Cardiol. 2013; 62(1): 78–80. DOI: 10.1016/j.jacc.2013.02.070.

Zembron-Lacny A., Morawin B., Wawrzy­niak-Gramacka E. et al. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. Int J Environ Res Public Health. 2020; 17(21): 7855. DOI: 10.3390/ijerph17217855.

Ziemann E., Olek R.A., Kujach S. et al. Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tennis players. J. Athl. Train. 2012; 47: 664–72. DOI: 10.4085/1062-6050-47.6.13.

Zingg J.M., Vlad A., Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel). 2021; 10(8): 1184. DOI: 10.3390/antiox10081184.

Published
2024-03-01
How to Cite
Mamiev, N., Vasilenko, V., Karpovskaya, E., Semenova, Y., Kanavets, N., Zaripov, B., & Hasanova, E. (2024). RATIONALE FOR USE OF WHOLE-BODY CRYOTHERAPY AND LOW BODY NEGATIVE PRESSURE DEVICE FOR PREVENTION OF OVERTRAINING SYNDROME. University Therapeutic Journal, 5(4), 137-155. https://doi.org/10.56871/UTJ.2023.13.58.013
Section
Статьи