КОРОНАВИРУСНАЯ ИНФЕКЦИЯ И COVID-19 У ДЕТЕЙ. ЧАСТЬ 1. ЭПИДЕМИОЛОГИЯ, ЭТИОЛОГИЯ, ПАТОГЕНЕЗ

  • Тамара Васильевна Косенкова Национальный медицинский исследовательский центр им. В.А. Алмазова. 197341, Санкт-Петербург, ул. Аккуратова, 2 https://orcid.org/0000-0002-6022-3420
  • Владимир Николаевич Тимченко Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Светлана Леонидовна Баннова Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Татьяна Маратовна Чернова Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Мария Александровна Шакмаева Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Оксана Владимировна Булина Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
  • Ирина Анатольевна Егорова Санкт-Петербургский государственный педиатрический медицинский университет. 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д. 2
Ключевые слова: COVID-19, дети, этиология, эпидемиология, патогенез

Аннотация

В лекции представлены данные об эпидемиологии коронавирусов как возбудителей сезонных респираторных ви русных инфекций у детей, а также о вирусе SARS-CoV-2, который вызвал пандемию COVID-19. Приведена классификация, морфология и структура сезонных коронавирусов. Показаны источник, пути передачи возбудителя при новой коронавирусной инфекции, уделено внимание роли COVID-19 как инфек ции, связанной с оказанием медицинской помощи. Описаны особенности строения SARS-CoV-2, его антигенные детерминанты, обеспечивающие проникновение вируса в клетки-мишени, а также основные и альтернативные механизмы проникновения вируса в клетки. Указаны клетки-мишени, которые высоко экспрессируют рецепторы входа для SARS-CoV-2. Подробно представлен патогенез новой коронавирусной инфекции, а также патоморфологические изменения в органах и тканях при COVID-19 у детей.

Литература

Романов Б.К. Коронавирусная инфекция COVID-2019. Безопасность и риск фармакотерапии. 2020;8(1):3–8. https://doi.org/10.30895/2312-7821-2020-8-1-3-8.

Хайтович А.Б. Коронавирусы (таксономия, структура вируса). Крымский журнал экспериментальной и клинической медицины. 2020;10(3):69–80. http://doi.org/10.37279/2224-6444-2020-10-3-69-81.

Никифоров В.В., Суранова Т.Г., Чернобровкина Т.Я., Яноковская Я.Д., Бурова С.В. Новая коронавирусная инфекция (COVID-19): клинико-эпидемиологические аспекты. Архивъ внутренней медицины. 2020;10(2):87–93. https://doi.org/10.20514/2226-6704-2020-10-2-87-93.

Schalk A.F., Hawn M.C. An apparently new respiratory disease of baby chicks. J Am Vet Med Assoc. 1931;78:19.

Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high roportion of patients with colds. Lancet. 1966;1(7428):76–77. http://doi.org/10.1016/s0140-6736(66)92364-6.

Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-CoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020;65(1):6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15.

Almeida J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Mallucci L., McIntosh K., Tyrrell D.A.J. Virology: Coronaviruses. Nature. 1968;220:650. https://doi.org/10.1038/220650b0.

Tyrrell D.A., Bynoe M.L. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J 1965;1:1467–1470. https://doi.org/10.1136/bmj.1.5448.1467.

Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121:190–193. https://doi.org/10.3181/00379727-121-30734.

Bruckova M., McIntosh K., Kapikian A.Z., Chanock R.M. The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers. Proc Soc Exp Biol Med. 1970;135(2):431–435. https://doi.org/10.3181/00379727-135-35068.

Тимченко В.Н., Суховецкая В.Ф., Чернова Т.М., Каплина Т.А., Субботина М.Д., Булина О.В., Писарева М.М. Результаты 5-летнего мониторинга за циркуляцией сезонных коронавирусов у госпитализированных детей в препандемическом периоде. Детские инфекции. 2021;20(1):5–11. https://doi.org/10.22627/2072-8107-2021-20-1-5-11.

Абатуров А.Е., Агафонова Е.А., Кривуша Е.Л., Никулина А.А. Патогенез COVID-19. Zdorov’e Rebenka. 2020;15(2):133–144. https://doi.org/10.22141/2224-0551.15.2.2020.200598.

Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q., Wu J. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. https://doi.org/10.1002/jmv.25685.

Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potentialvaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9. https://doi.org/10.12932/AP-200220-0772.

Carly G.K. Ziegler, Samuel J. Allon, Sarah K. Nyquist, Ian М. Mbano, Vincent N. Miao, Constantine N. Tzouanas et al. SARS-CoV-2 Receptor ACE2 is an Interferon- Stimulated Gene in Human Airway Epithelial Cells and Is Enriched in Specific Cell Subsets Across Tissues. Cell. 2020;181(5):1016–1035. https://doi.org/10.1016/j.cell.2020.04.035.

Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), Версии 1-18 (2020–2023 гг.)

Mattiuzzi C., Lippi G. Timeline analysis of clinical severity of COVID-19 in the general population. Eur J Intern Med. 2023;110:97–98. https://doi.org/10.1016/j.ejim.2022.12.007.

Peng Zhang, Mingwei Wei, Pengfei Jing, Zhuopei Li, Jingxin Li, Fengcai Zhu. COVID-19 in children: epidemic issues and candidate vaccines. Chin Med J (Engl). 2022;135(11):1314–1324. https://doi.org/10.1097/CM9.0000000000002169.

Wenping Gong, Seppo Parkkila, Xueqiong Wu, Ashok Aspatwar SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies Int Rev Immunol. 2023;42(6):393–414. https://doi.org/10.1080/08830185.2022.2079642.

Swapnil B. Kadam, Geetika S. Sukhramani, Pratibha Bishnoi, Anupama A. Pable, Vitthal T. Barvkar SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021;61(3):180–202. https://doi.org/10.1002/jobm.202000537.

Raul S. Freitas, Tyler F. Crum, Kislay Parvatiyar. SARS-CoV-2 Spike Antagonizes Innate Antiviral Immunity by Targeting Interferon Regulatory Factor 3. Front Cell Infect Microbiol. 2022;10(11):789462. https://doi.org/10.3389/fcimb.2021.789462.

Ming-Chun Yang, Yu-Tsun Su, Ping-Hong Chen, Ching-Chung Tsai, Ting-I Lin, Jiunn-Ren Wu Changing patterns of infectious diseases in children during the COVID-19 pandemic Front Cell Infect Microbiol. 2023;29(13):1200617. https://doi.org/10.3389/fcimb.2023.1200617.

Daniel Wrapp, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith1, Ching-Lin Hsieh, Olubukola Abio. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. https://doi.org/10.1126/science.abb2507.

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARSCoV- Spike Glycoprotein. Cell. 2020;181(2):281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058.

Ou X., Liu Y., Lei X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9.

Waradon Sungnak, Ni Huang, Christophe Bécavin, Marijn Berg, Rachel Queen, Monika Litvinukova et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine. 2020;26(5):681–687. https://doi.org/10.1038/s41591-020-0868-6.

Чернова Т.М., Иванов Д.О., Павлова Е.Б., Тимченко В.Н., Баракина Е.В., Булина О.В., Базунова И.Ю., Жеребцова А.А., Мурашева К.Д. Влияние пандемии COVID-19 на инфекционную заболеваемость у детей в условиях мегаполиса. Детские инфекции. 2023;22(2):5–11. https://doi.org/10.22627/2072-8107-2023-22-2-5-11.

Renhong Yan, Yuanyuan Zhang, Yaning Li, Lu Xia, Yingying Guo, Qiang Zhou Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448.

Алексеева Е.И., Анциферов М.Б., Аронов Л.С., Афуков И.И., Белевский А.С., Буланов А.Ю. и др. Клинический протокол лечения детей с новой коронавирусной инфекцией (COVID-19), находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы.

Под ред. А.И. Хрипуна. М.: НИИОЗММ ДЗМ; 2021.

Shelley Riphagen, Xabier Gomez, Carmen Gonzalez-Martinez, Nick Wilkinson, Paraskevi Theocharis. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–1608. https://doi.org/10.1016/S0140-6736(20)31094-1.

Stadnytskyi V., Bax C.E., Bax A., Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci USA. 2020;2;117(22):11875–11877. https://doi.org/10.1073/pnas.2006874117.

Zhang Dong Y., Mo X., Hu Y., Qi X., Jiang F., Jiang Z., Tong S. Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China. Pediatrics. 2020;145(6):e20200702. https://doi.org/10.1542/peds.2020-0702.

Jasper Fuk-Woo Chan, Shuofeng Yuan, Kin-Hang Kok, Kelvin Kai-Wang To, Hin Chu, Jin Yang, Fanfan Xing et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. https://doi.org/10.1016/S0140-6736(20)30154-9.

Yu P., Zhu J., Zhang Z., Han Y., Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis. 2020;221(11):1757–1761. https://doi.org/10.1093/infdis/jiaa077.

Li Diangeng, Jin Meiling, Bao Pengtao Clinical Cha­racteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open. 2020;3(5):e208292. https://doi.org/10.1001/jamanetworkopen.2020.8292.

Albert L. Hsu, Minhui Guan, Eric Johannesen, Amanda J. Stephens, Nabila Khaleel, Nikki Kagan, Breanna C. Tuhlei, Xiu-Feng Wan. Placental SARS-CoV-2 in a pregnant woman with mild COVID-19 disease. J Med Virol. 2021;93(2):1038–1044. https://doi.org/10.1002/jmv.26386.

David A. Schwartz, Denise Morotti. Placental Pathology of COVID-19 with and without Fetal and Neonatal Infection: Trophoblast Necrosis and Chronic Histiocytic Intervillosi­tis as Risk Factors for Transplacental Transmission of ­SARS-CoV-2. Viruses. 2020;12(11):1308. https://doi.org/10.3390/v12111308.

Alexandre J. Vivanti, Christelle Vauloup-Fellous, Sophie Prevot, Veronique Zupan, Cecile Suffee, Jeremy Do Cao, Alexandra Benachi & Daniele De Luca. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11:3572. https://doi.org/10.1038/s41467-020-17436-6.

Jafari M., Pormohammad A., Sheikh Neshin S. A., Ghor­bani S., Bose D., Alimohammadi S., Basirjafari S., Mohammadi M., Rasmussen-Ivey C., Razizadeh M.H., Nouri-Vaskeh M., Zarei M. Clinical characteristics and outcomes of pregnant women with COVID-19 and comparison with control patients: A systematic review and meta-analysis. Rev Med Virol. 2021;2:e2208. https://doi.org/10.1002/rmv.2208.

Wu Y., Liu C., Dong L. et al. Coronavirus disease 2019 among pregnant Chinese women: Case series data on the safety of vaginal birth and breastfeeding. BJOG. 2020;5. https://doi.org/10.1111/1471–0528.16276.

Patanè L., Morotti D., Giunta M.R., Sigismondi C., Piccoli M.G., Frigerio L. et al. Vertical transmission of coronavirus disease 2019: severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019-positive mothers and neonates at birth. Am J Obstet Gynecol MFM. 2020;2(3):100145. https://doi.org/10.1016/j.ajogmf.2020.100145.

Dong L., Tian J., He S., Zhu C., Wang J., Liu C. et al. Possible Vertical Transmission of SARS-CoV-from an Infected Mother to Her Newborn. JAMA. 2020;323(18):1846–1848. https://doi.org/10.1001/jama.2020.4621.

Walker K.F., O’Donoghue K., Grace N., Dorling J., Comeau J.L., Li W., Thornton J.G. Maternal transmission of SARS-COV-2 to the neonate, and possible routes for such transmission: A systematic review and critical analysis. BJOG. 2020;127(11):1324–1336. https://doi.org/10.1111/1471-0528.16362.

Kenrie P.Y. Hui, Man-Chun Cheung, Ranawaka APM. Perera, Ka-Chun Ng, Christine HT. Bui, John CWHo et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. The Lancet Respiratory Medicine. 2020;8(7):687–695. https://doi.org/10.1016/S2213-2600(20)30193-4.

Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R. et al. The Sinai Immunology Review Project, Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–941. https://doi.org/10.1016/j.immuni.2020.05.002.

Srikanth Umakanthan, Pradeep Sahu, Anu V Ranade, Maryann M. Bukelo, Joseph Sushil Rao, Lucas Faria Abrahao-Machado, Samarika Dahal, Hari Kumar, Dhananjaya Kv. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–758. https://doi.org/10.1136/postgradmedj-2020-138234.

Hao Xu, Liang Zhong, Jiaxin Deng, Jiakuan Peng, Hongxia Dan, Xin Zeng, Taiwen Li, Qianming Chen. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. https://doi.org/10.1038/s41368-020-0074-x.

Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–192. https://doi.org/10.1007/s11684-020-0754-0.

Liqun He, Maarja Andaloussi Mäe, Lars Muhl, Ying Sun, Riikka Pietilä, Khayrun Nahar, Elisa Vázquez Liébanas, Malin Jonsson Fagerlund, Anders Oldner, Jianping et al. Pericyte-specific vascular expression of ­SARS-CoV-2 receptor ACE2 — implications for microvascular inflammation. 2020. https://doi.org/10.1101/2020.05.11.088500.

Li M., Chen L., Zhang J., Xiong C., Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One. 2020;15:e0230295. https://doi.org/10.1371/journal.pone.0230295.

Vento-Tormo R., Efremova M., Botting R.A., Turco M.Y., Vento-Tormo M., Meyer K.B., Park J.E., Stephenson E., Polanski K., Goncalves A. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–353. https://doi.org/10.1038/s41586-018-0698-6.

Charlotte Steenblock, Nicole Toepfner, Felix Beuschlein, Nikolaos Perakakis, Ranjit Mohan Anjana, Viswanathan Mohan, Nitish R Mahapatra, Stefan R Bornstein. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract Res Clin Endocrinol Metab. 2023;37(4):101761. https://doi.org/10.1016/j.beem.2023.101761.

Wu Yanting and Liu, Chen and Dong, Lan and Zhang, Chenjie and Chen, Yang and Liu, Jun and Zhang, Chen and Duan, et al. Viral Shedding of COVID-19 in Pregnant Women. 2020. https://doi.org/10.2139/ssrn.3562059

Scorzolini L., Corpolongo A., Castilletti C., Lalle E., Maria­no A., Nicastri E. Comment of the potential risks of sexual and vertical transmission of Covid-19 infection. Clin Infect Dis. 2020;16:ciaa445. https://doi.org/10.1093/cid/ciaa445.

Jie Yan, Juanjuan Guo, Cuifang Fan, Juan Juan, Xuec­hen Yu, Jiafu Li, Ling Feng et al. COVID-19 in pregnant women, a report based on 116 cases. Amer J Obstet Gynecol. 2020;223(1):111.el-111.e14. https://doi.org/10.1016/j.ajog.2020.04.014.

Rabaan A.A., Al-Ahmed S.H., Singh Malik Y.S., M Iqbal Yatoo M.I., Bonilla-Aldana K.D., Alfonso J Rodriguez-Morales A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A Comparative Overview. Infez Med. 2020;28(2):174–184.

Shanes E.D., Mithal L.B., Otero S., Azad H.A., Miller E.S., Goldstein J.A. Placental pathology in COVID-19. Am J Clin Pathol. 2020;154:23–32. https://doi.org/10.1093/ajcp/aqaa089.

Soll D., Beer F., Spranger L. et al. Effects of weight loss on adipose and muscular neuropilin 1 mRNA expression in obesity: potential implication in SARS-CoV-2 infections? Obes Facts. 2022;15(1):90–98. https://doi.org/10.1159/000520419.

Oz M., Lorke D.E., Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharm Ther. 202:221:107750. https://doi.org/10.1016/j.pharmthera.2020.107750.

Hui Zeng, Chen Xu, Junli Fan, Yueting Tang, Qiaoling Deng, Wei Zhang, Xinghua Long. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020;323(18):1848–1849. https://doi.org/10.1001/jama.2020.4861.

Ulrich H., Pillat M. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement Stem Cell Rev Rep. 2020;16(3):434–440. https://doi.org/10.1007/s12015-020-09976-7.

Успенская Ю.А., Комлева Ю.К., Горина Я.В., Пожиленкова Е.А., Белова О.А., Салмина А.Б. Полифункциональность CD147 и новые возможности для диагностики и терапии. Сибирское медицинское обозрение. 2018;4:22–30. https://doi.org/10.20333/2500136-2018-4-22-30.

Anthony J. Carlos, Dat P. Ha, Da-Wei Yeh, Richard Van Krieken, Chun-Chih Tseng, Pu Zhang et al. The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J Biol Chem. 2021;296:100759. https://doi.org/10.1016/j.jbc.2021.100759.

Dat P. Ha, Richard Van Krieken, Anthony J. Carlos, Amy S. Lee. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J Infect. 2020;81(3):452–482. https://doi.org/10.1016/j.jinf.2020.06.017.

Claudio Fenizia, Silvia Galbiati, Claudia Vanetti, Riccardo Vago, Mario Clerici, Carlo Tacchetti, Tiziana Daniele. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells. 2021;10(6):1434. https://doi.org/10.3390/cells10061434.

Ke Wang, Wei Chen, Zheng Zhang, Yongqiang Deng, Jian-Qi Lian, Peng Du, Ding Wei, Yang Zhang et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;4,5(1):283. https://doi.org/10.1038/s41392-020-00426-x.

Dat P. Ha, Richard Van Krieken, Anthony J. Carlos, Amy S. Lee. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J Infect. 2020;81(3):452–482. https://doi.org/10.1016/j.jinf.2020.06.017.

Jiewen Fu, Binghui Song, Jiaman Du, Shuguang Liu, Jiayue He, Ting Xiao et al. Impact of BSG/CD147 gene expression on diagnostic, prognostic and therapeutic strategies towards malignant cancers and possible susceptibility to SARS-CoV-2. Mol Biol Rep. 2023;50(3):2269–2281. https://doi.org/10.1007/s11033-022-08231-1.

David E. Gordon, Joseph Hiatt, Mehdi Bouhaddou, Veronica V. Rezelj, Svenja Ulferts, Hannes Braberg et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020;eabe9403. https://doi.org/10.1126/science.abe9403.

He-wei Jiang, Hai-nan Zhang, Qing-feng Meng, Jia Xie, Yang Li, Hong Chen, Yun-xiao Zheng, Xue-ning Wang, Huan Qi, Jing Zhang, Pei-Hui Wang, Ze-Guang Han and Sheng-ce Tao. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cellular & Molecular Immunology. 2020;17:9. https://doi.org/10.1038/s41423-020-0514-8.

Fabrizio Chiodo, Sven C.M. Bruijns, Ernesto Rodriguez, R.J. Eveline Li, Antonio Molinaro, Alba Silipo, Flaviana Di Lorenzo et al. Novel ACE2-independent carbohydrate-binding of SARS-CoV-2 spike protein to host lectins and lung microbiota. Bio Rxiv. 2020. https://doi.org/10.1101/2020.05.13.092478.

Mohammed Alsharifi, Matthias Regner, Robert Blan­den, Mario Lobigs, Eva Lee, Aulikki Koskinen and Arno Müllbacher. Exhaustion of Type I Interferon Response following an Acute Viral Infectio. J Immunol. 2006;177(5):3235–3241.

Spoulou V., Noni M., Koukou D., Kossyvakis A., Michos A. Clinical characteristics of COVID-19 in neonates and young infants. Eur J Pediatr. 2021:1–5. https://doi.org/10.1007/s00431-021-04042-x.

Spoulou V., Noni M., Koukou D., Kossyvakis A., Michos A. Clinical characteristics of COVID-19 in neonates and young infants. Eur J Pediatr. 2021:1–5. https://doi.org/10.1007/s00431-021-04042-x.

Османов И.М., Мазанкова Л.Н., Борзакова С.Н., Юдина А.Е., Миронова А.К., Винокуров А.В. Особенности клинических проявлений и терапии новой коронавирусной инфекции (COVID-19) у детей раннего возраста в период распространения варианта «Омикрон». Практика педиатра. 2022;2:60–64.

Fang F., Luo X. Facing the pandemic of 2019 novel coronavirus infections: the pediatric perspectives. Zhonghua Er Ke Za Zhi. 2020;58(2):81–85. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.02.001.

Lishen Wang, Zhihan Wang, Rui Huang, Weishuai Li, Dongming Zheng. SARS-CoV-2 may play a direct role in the pathogenesis of posterior reversible encephalopathy syndrome (PRES) associated with COVID-19: A CARE-compliant case report and literature review. Medicine (Baltimore). 2024;103(5):e37192. https://doi.org/10.1097/MD.0000000000037192.

Singhal T.A. Review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281–286. https://doi.org/10.1007/s12098-020-03263-6.

Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–193. https://doi.org/10.1016/j.chom.2016.01.007.

Dorjee K., Kim H., Bonomo E., Dolma R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS One. 2020;15(12):e0243191. https://doi.org/10.1371/journal.pone.0243191.

Mohammed Alsharifi, Matthias Regner, Robert Blan­den, Mario Lobigs, Eva Lee, Aulikki Koskinen and Arno Müllbacher. Exhaustion of Type I Interferon Response following an Acute Viral Infectio. J Immunol. 2006;177(5):3235–3241.

Опубликован
2025-01-28
Как цитировать
Косенкова, Т. В., Тимченко, В. Н., Баннова, С. Л., Чернова, Т. М., Шакмаева, М. А., Булина, О. В., & Егорова, И. А. (2025). КОРОНАВИРУСНАЯ ИНФЕКЦИЯ И COVID-19 У ДЕТЕЙ. ЧАСТЬ 1. ЭПИДЕМИОЛОГИЯ, ЭТИОЛОГИЯ, ПАТОГЕНЕЗ. Детская медицина Северо-Запада, 12(4), 21-38. https://doi.org/10.56871/CmN-W.2024.86.55.002
Раздел
Статьи