CORONAVIRUS INFECTION AND COVID-19 IN CHILDREN. PART 1. EPIDEMIOLOGY, ETIOLOGY, PATHOGENESIS

  • T.V. Kosenkova V.A. Almazov National Medical Research Center. Akkuratova str., 2, Saint Petersburg, Russian Federation, 197341 https://orcid.org/0000-0002-6022-3420
  • V.N. Timchenko Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation
  • S.L. Bannova Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation
  • T.M. Chernova Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation
  • M.A. Shakmaeva Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation
  • O.V. Bulina Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation
  • I.A. Egorova Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation
Keywords: COVID-19, children, etiology, epidemiology, pathogenesis

Abstract

The lecture presents data on the epidemiology of coronaviruses as causative agents of seasonal respiratory viral infections in children, as well as the SARS-CoV-2 virus, which caused the COVID-19 pandemic. The classification, morphology and structure of seasonal coronaviruses are given. The source and transmission routes of the pathogen in a new coronavirus infection are shown, attention is paid to the role of COVID-19 as an infection associated with healthcare. The structural features of SARS-CoV-2, its antigenic determinants that ensure penetration of the virus into target cells, as well as the main and alternative mechanisms of virus penetration into cells are described. Target cells that highly express entry receptors for SARS-CoV-2 are indicated. The pathogenesis of the new coronavirus infection, as well as pathomorphological changes in organs and tissues in COVID-19 in children, are presented in detail

References

Романов Б.К. Коронавирусная инфекция COVID-2019. Безопасность и риск фармакотерапии. 2020;8(1):3–8. https://doi.org/10.30895/2312-7821-2020-8-1-3-8.

Хайтович А.Б. Коронавирусы (таксономия, структура вируса). Крымский журнал экспериментальной и клинической медицины. 2020;10(3):69–80. http://doi.org/10.37279/2224-6444-2020-10-3-69-81.

Никифоров В.В., Суранова Т.Г., Чернобровкина Т.Я., Яноковская Я.Д., Бурова С.В. Новая коронавирусная инфекция (COVID-19): клинико-эпидемиологические аспекты. Архивъ внутренней медицины. 2020;10(2):87–93. https://doi.org/10.20514/2226-6704-2020-10-2-87-93.

Schalk A.F., Hawn M.C. An apparently new respiratory disease of baby chicks. J Am Vet Med Assoc. 1931;78:19.

Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high roportion of patients with colds. Lancet. 1966;1(7428):76–77. http://doi.org/10.1016/s0140-6736(66)92364-6.

Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-CoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020;65(1):6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15.

Almeida J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Mallucci L., McIntosh K., Tyrrell D.A.J. Virology: Coronaviruses. Nature. 1968;220:650. https://doi.org/10.1038/220650b0.

Tyrrell D.A., Bynoe M.L. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J 1965;1:1467–1470. https://doi.org/10.1136/bmj.1.5448.1467.

Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121:190–193. https://doi.org/10.3181/00379727-121-30734.

Bruckova M., McIntosh K., Kapikian A.Z., Chanock R.M. The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers. Proc Soc Exp Biol Med. 1970;135(2):431–435. https://doi.org/10.3181/00379727-135-35068.

Тимченко В.Н., Суховецкая В.Ф., Чернова Т.М., Каплина Т.А., Субботина М.Д., Булина О.В., Писарева М.М. Результаты 5-летнего мониторинга за циркуляцией сезонных коронавирусов у госпитализированных детей в препандемическом периоде. Детские инфекции. 2021;20(1):5–11. https://doi.org/10.22627/2072-8107-2021-20-1-5-11.

Абатуров А.Е., Агафонова Е.А., Кривуша Е.Л., Никулина А.А. Патогенез COVID-19. Zdorov’e Rebenka. 2020;15(2):133–144. https://doi.org/10.22141/2224-0551.15.2.2020.200598.

Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q., Wu J. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. https://doi.org/10.1002/jmv.25685.

Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potentialvaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9. https://doi.org/10.12932/AP-200220-0772.

Carly G.K. Ziegler, Samuel J. Allon, Sarah K. Nyquist, Ian М. Mbano, Vincent N. Miao, Constantine N. Tzouanas et al. SARS-CoV-2 Receptor ACE2 is an Interferon- Stimulated Gene in Human Airway Epithelial Cells and Is Enriched in Specific Cell Subsets Across Tissues. Cell. 2020;181(5):1016–1035. https://doi.org/10.1016/j.cell.2020.04.035.

Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), Версии 1-18 (2020–2023 гг.)

Mattiuzzi C., Lippi G. Timeline analysis of clinical severity of COVID-19 in the general population. Eur J Intern Med. 2023;110:97–98. https://doi.org/10.1016/j.ejim.2022.12.007.

Peng Zhang, Mingwei Wei, Pengfei Jing, Zhuopei Li, Jingxin Li, Fengcai Zhu. COVID-19 in children: epidemic issues and candidate vaccines. Chin Med J (Engl). 2022;135(11):1314–1324. https://doi.org/10.1097/CM9.0000000000002169.

Wenping Gong, Seppo Parkkila, Xueqiong Wu, Ashok Aspatwar SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies Int Rev Immunol. 2023;42(6):393–414. https://doi.org/10.1080/08830185.2022.2079642.

Swapnil B. Kadam, Geetika S. Sukhramani, Pratibha Bishnoi, Anupama A. Pable, Vitthal T. Barvkar SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021;61(3):180–202. https://doi.org/10.1002/jobm.202000537.

Raul S. Freitas, Tyler F. Crum, Kislay Parvatiyar. SARS-CoV-2 Spike Antagonizes Innate Antiviral Immunity by Targeting Interferon Regulatory Factor 3. Front Cell Infect Microbiol. 2022;10(11):789462. https://doi.org/10.3389/fcimb.2021.789462.

Ming-Chun Yang, Yu-Tsun Su, Ping-Hong Chen, Ching-Chung Tsai, Ting-I Lin, Jiunn-Ren Wu Changing patterns of infectious diseases in children during the COVID-19 pandemic Front Cell Infect Microbiol. 2023;29(13):1200617. https://doi.org/10.3389/fcimb.2023.1200617.

Daniel Wrapp, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith1, Ching-Lin Hsieh, Olubukola Abio. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. https://doi.org/10.1126/science.abb2507.

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARSCoV- Spike Glycoprotein. Cell. 2020;181(2):281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058.

Ou X., Liu Y., Lei X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9.

Waradon Sungnak, Ni Huang, Christophe Bécavin, Marijn Berg, Rachel Queen, Monika Litvinukova et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine. 2020;26(5):681–687. https://doi.org/10.1038/s41591-020-0868-6.

Чернова Т.М., Иванов Д.О., Павлова Е.Б., Тимченко В.Н., Баракина Е.В., Булина О.В., Базунова И.Ю., Жеребцова А.А., Мурашева К.Д. Влияние пандемии COVID-19 на инфекционную заболеваемость у детей в условиях мегаполиса. Детские инфекции. 2023;22(2):5–11. https://doi.org/10.22627/2072-8107-2023-22-2-5-11.

Renhong Yan, Yuanyuan Zhang, Yaning Li, Lu Xia, Yingying Guo, Qiang Zhou Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448.

Алексеева Е.И., Анциферов М.Б., Аронов Л.С., Афуков И.И., Белевский А.С., Буланов А.Ю. и др. Клинический протокол лечения детей с новой коронавирусной инфекцией (COVID-19), находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы.

Под ред. А.И. Хрипуна. М.: НИИОЗММ ДЗМ; 2021.

Shelley Riphagen, Xabier Gomez, Carmen Gonzalez-Martinez, Nick Wilkinson, Paraskevi Theocharis. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–1608. https://doi.org/10.1016/S0140-6736(20)31094-1.

Stadnytskyi V., Bax C.E., Bax A., Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci USA. 2020;2;117(22):11875–11877. https://doi.org/10.1073/pnas.2006874117.

Zhang Dong Y., Mo X., Hu Y., Qi X., Jiang F., Jiang Z., Tong S. Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China. Pediatrics. 2020;145(6):e20200702. https://doi.org/10.1542/peds.2020-0702.

Jasper Fuk-Woo Chan, Shuofeng Yuan, Kin-Hang Kok, Kelvin Kai-Wang To, Hin Chu, Jin Yang, Fanfan Xing et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. https://doi.org/10.1016/S0140-6736(20)30154-9.

Yu P., Zhu J., Zhang Z., Han Y., Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis. 2020;221(11):1757–1761. https://doi.org/10.1093/infdis/jiaa077.

Li Diangeng, Jin Meiling, Bao Pengtao Clinical Cha­racteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open. 2020;3(5):e208292. https://doi.org/10.1001/jamanetworkopen.2020.8292.

Albert L. Hsu, Minhui Guan, Eric Johannesen, Amanda J. Stephens, Nabila Khaleel, Nikki Kagan, Breanna C. Tuhlei, Xiu-Feng Wan. Placental SARS-CoV-2 in a pregnant woman with mild COVID-19 disease. J Med Virol. 2021;93(2):1038–1044. https://doi.org/10.1002/jmv.26386.

David A. Schwartz, Denise Morotti. Placental Pathology of COVID-19 with and without Fetal and Neonatal Infection: Trophoblast Necrosis and Chronic Histiocytic Intervillosi­tis as Risk Factors for Transplacental Transmission of ­SARS-CoV-2. Viruses. 2020;12(11):1308. https://doi.org/10.3390/v12111308.

Alexandre J. Vivanti, Christelle Vauloup-Fellous, Sophie Prevot, Veronique Zupan, Cecile Suffee, Jeremy Do Cao, Alexandra Benachi & Daniele De Luca. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11:3572. https://doi.org/10.1038/s41467-020-17436-6.

Jafari M., Pormohammad A., Sheikh Neshin S. A., Ghor­bani S., Bose D., Alimohammadi S., Basirjafari S., Mohammadi M., Rasmussen-Ivey C., Razizadeh M.H., Nouri-Vaskeh M., Zarei M. Clinical characteristics and outcomes of pregnant women with COVID-19 and comparison with control patients: A systematic review and meta-analysis. Rev Med Virol. 2021;2:e2208. https://doi.org/10.1002/rmv.2208.

Wu Y., Liu C., Dong L. et al. Coronavirus disease 2019 among pregnant Chinese women: Case series data on the safety of vaginal birth and breastfeeding. BJOG. 2020;5. https://doi.org/10.1111/1471–0528.16276.

Patanè L., Morotti D., Giunta M.R., Sigismondi C., Piccoli M.G., Frigerio L. et al. Vertical transmission of coronavirus disease 2019: severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019-positive mothers and neonates at birth. Am J Obstet Gynecol MFM. 2020;2(3):100145. https://doi.org/10.1016/j.ajogmf.2020.100145.

Dong L., Tian J., He S., Zhu C., Wang J., Liu C. et al. Possible Vertical Transmission of SARS-CoV-from an Infected Mother to Her Newborn. JAMA. 2020;323(18):1846–1848. https://doi.org/10.1001/jama.2020.4621.

Walker K.F., O’Donoghue K., Grace N., Dorling J., Comeau J.L., Li W., Thornton J.G. Maternal transmission of SARS-COV-2 to the neonate, and possible routes for such transmission: A systematic review and critical analysis. BJOG. 2020;127(11):1324–1336. https://doi.org/10.1111/1471-0528.16362.

Kenrie P.Y. Hui, Man-Chun Cheung, Ranawaka APM. Perera, Ka-Chun Ng, Christine HT. Bui, John CWHo et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. The Lancet Respiratory Medicine. 2020;8(7):687–695. https://doi.org/10.1016/S2213-2600(20)30193-4.

Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R. et al. The Sinai Immunology Review Project, Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–941. https://doi.org/10.1016/j.immuni.2020.05.002.

Srikanth Umakanthan, Pradeep Sahu, Anu V Ranade, Maryann M. Bukelo, Joseph Sushil Rao, Lucas Faria Abrahao-Machado, Samarika Dahal, Hari Kumar, Dhananjaya Kv. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–758. https://doi.org/10.1136/postgradmedj-2020-138234.

Hao Xu, Liang Zhong, Jiaxin Deng, Jiakuan Peng, Hongxia Dan, Xin Zeng, Taiwen Li, Qianming Chen. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. https://doi.org/10.1038/s41368-020-0074-x.

Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–192. https://doi.org/10.1007/s11684-020-0754-0.

Liqun He, Maarja Andaloussi Mäe, Lars Muhl, Ying Sun, Riikka Pietilä, Khayrun Nahar, Elisa Vázquez Liébanas, Malin Jonsson Fagerlund, Anders Oldner, Jianping et al. Pericyte-specific vascular expression of ­SARS-CoV-2 receptor ACE2 — implications for microvascular inflammation. 2020. https://doi.org/10.1101/2020.05.11.088500.

Li M., Chen L., Zhang J., Xiong C., Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One. 2020;15:e0230295. https://doi.org/10.1371/journal.pone.0230295.

Vento-Tormo R., Efremova M., Botting R.A., Turco M.Y., Vento-Tormo M., Meyer K.B., Park J.E., Stephenson E., Polanski K., Goncalves A. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–353. https://doi.org/10.1038/s41586-018-0698-6.

Charlotte Steenblock, Nicole Toepfner, Felix Beuschlein, Nikolaos Perakakis, Ranjit Mohan Anjana, Viswanathan Mohan, Nitish R Mahapatra, Stefan R Bornstein. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract Res Clin Endocrinol Metab. 2023;37(4):101761. https://doi.org/10.1016/j.beem.2023.101761.

Wu Yanting and Liu, Chen and Dong, Lan and Zhang, Chenjie and Chen, Yang and Liu, Jun and Zhang, Chen and Duan, et al. Viral Shedding of COVID-19 in Pregnant Women. 2020. https://doi.org/10.2139/ssrn.3562059

Scorzolini L., Corpolongo A., Castilletti C., Lalle E., Maria­no A., Nicastri E. Comment of the potential risks of sexual and vertical transmission of Covid-19 infection. Clin Infect Dis. 2020;16:ciaa445. https://doi.org/10.1093/cid/ciaa445.

Jie Yan, Juanjuan Guo, Cuifang Fan, Juan Juan, Xuec­hen Yu, Jiafu Li, Ling Feng et al. COVID-19 in pregnant women, a report based on 116 cases. Amer J Obstet Gynecol. 2020;223(1):111.el-111.e14. https://doi.org/10.1016/j.ajog.2020.04.014.

Rabaan A.A., Al-Ahmed S.H., Singh Malik Y.S., M Iqbal Yatoo M.I., Bonilla-Aldana K.D., Alfonso J Rodriguez-Morales A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A Comparative Overview. Infez Med. 2020;28(2):174–184.

Shanes E.D., Mithal L.B., Otero S., Azad H.A., Miller E.S., Goldstein J.A. Placental pathology in COVID-19. Am J Clin Pathol. 2020;154:23–32. https://doi.org/10.1093/ajcp/aqaa089.

Soll D., Beer F., Spranger L. et al. Effects of weight loss on adipose and muscular neuropilin 1 mRNA expression in obesity: potential implication in SARS-CoV-2 infections? Obes Facts. 2022;15(1):90–98. https://doi.org/10.1159/000520419.

Oz M., Lorke D.E., Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharm Ther. 202:221:107750. https://doi.org/10.1016/j.pharmthera.2020.107750.

Hui Zeng, Chen Xu, Junli Fan, Yueting Tang, Qiaoling Deng, Wei Zhang, Xinghua Long. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020;323(18):1848–1849. https://doi.org/10.1001/jama.2020.4861.

Ulrich H., Pillat M. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement Stem Cell Rev Rep. 2020;16(3):434–440. https://doi.org/10.1007/s12015-020-09976-7.

Успенская Ю.А., Комлева Ю.К., Горина Я.В., Пожиленкова Е.А., Белова О.А., Салмина А.Б. Полифункциональность CD147 и новые возможности для диагностики и терапии. Сибирское медицинское обозрение. 2018;4:22–30. https://doi.org/10.20333/2500136-2018-4-22-30.

Anthony J. Carlos, Dat P. Ha, Da-Wei Yeh, Richard Van Krieken, Chun-Chih Tseng, Pu Zhang et al. The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J Biol Chem. 2021;296:100759. https://doi.org/10.1016/j.jbc.2021.100759.

Dat P. Ha, Richard Van Krieken, Anthony J. Carlos, Amy S. Lee. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J Infect. 2020;81(3):452–482. https://doi.org/10.1016/j.jinf.2020.06.017.

Claudio Fenizia, Silvia Galbiati, Claudia Vanetti, Riccardo Vago, Mario Clerici, Carlo Tacchetti, Tiziana Daniele. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells. 2021;10(6):1434. https://doi.org/10.3390/cells10061434.

Ke Wang, Wei Chen, Zheng Zhang, Yongqiang Deng, Jian-Qi Lian, Peng Du, Ding Wei, Yang Zhang et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;4,5(1):283. https://doi.org/10.1038/s41392-020-00426-x.

Dat P. Ha, Richard Van Krieken, Anthony J. Carlos, Amy S. Lee. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J Infect. 2020;81(3):452–482. https://doi.org/10.1016/j.jinf.2020.06.017.

Jiewen Fu, Binghui Song, Jiaman Du, Shuguang Liu, Jiayue He, Ting Xiao et al. Impact of BSG/CD147 gene expression on diagnostic, prognostic and therapeutic strategies towards malignant cancers and possible susceptibility to SARS-CoV-2. Mol Biol Rep. 2023;50(3):2269–2281. https://doi.org/10.1007/s11033-022-08231-1.

David E. Gordon, Joseph Hiatt, Mehdi Bouhaddou, Veronica V. Rezelj, Svenja Ulferts, Hannes Braberg et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020;eabe9403. https://doi.org/10.1126/science.abe9403.

He-wei Jiang, Hai-nan Zhang, Qing-feng Meng, Jia Xie, Yang Li, Hong Chen, Yun-xiao Zheng, Xue-ning Wang, Huan Qi, Jing Zhang, Pei-Hui Wang, Ze-Guang Han and Sheng-ce Tao. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cellular & Molecular Immunology. 2020;17:9. https://doi.org/10.1038/s41423-020-0514-8.

Fabrizio Chiodo, Sven C.M. Bruijns, Ernesto Rodriguez, R.J. Eveline Li, Antonio Molinaro, Alba Silipo, Flaviana Di Lorenzo et al. Novel ACE2-independent carbohydrate-binding of SARS-CoV-2 spike protein to host lectins and lung microbiota. Bio Rxiv. 2020. https://doi.org/10.1101/2020.05.13.092478.

Mohammed Alsharifi, Matthias Regner, Robert Blan­den, Mario Lobigs, Eva Lee, Aulikki Koskinen and Arno Müllbacher. Exhaustion of Type I Interferon Response following an Acute Viral Infectio. J Immunol. 2006;177(5):3235–3241.

Spoulou V., Noni M., Koukou D., Kossyvakis A., Michos A. Clinical characteristics of COVID-19 in neonates and young infants. Eur J Pediatr. 2021:1–5. https://doi.org/10.1007/s00431-021-04042-x.

Spoulou V., Noni M., Koukou D., Kossyvakis A., Michos A. Clinical characteristics of COVID-19 in neonates and young infants. Eur J Pediatr. 2021:1–5. https://doi.org/10.1007/s00431-021-04042-x.

Османов И.М., Мазанкова Л.Н., Борзакова С.Н., Юдина А.Е., Миронова А.К., Винокуров А.В. Особенности клинических проявлений и терапии новой коронавирусной инфекции (COVID-19) у детей раннего возраста в период распространения варианта «Омикрон». Практика педиатра. 2022;2:60–64.

Fang F., Luo X. Facing the pandemic of 2019 novel coronavirus infections: the pediatric perspectives. Zhonghua Er Ke Za Zhi. 2020;58(2):81–85. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.02.001.

Lishen Wang, Zhihan Wang, Rui Huang, Weishuai Li, Dongming Zheng. SARS-CoV-2 may play a direct role in the pathogenesis of posterior reversible encephalopathy syndrome (PRES) associated with COVID-19: A CARE-compliant case report and literature review. Medicine (Baltimore). 2024;103(5):e37192. https://doi.org/10.1097/MD.0000000000037192.

Singhal T.A. Review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281–286. https://doi.org/10.1007/s12098-020-03263-6.

Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–193. https://doi.org/10.1016/j.chom.2016.01.007.

Dorjee K., Kim H., Bonomo E., Dolma R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS One. 2020;15(12):e0243191. https://doi.org/10.1371/journal.pone.0243191.

Mohammed Alsharifi, Matthias Regner, Robert Blan­den, Mario Lobigs, Eva Lee, Aulikki Koskinen and Arno Müllbacher. Exhaustion of Type I Interferon Response following an Acute Viral Infectio. J Immunol. 2006;177(5):3235–3241.

Published
2025-01-28
How to Cite
Kosenkova, T., Timchenko, V., Bannova, S., Chernova, T., Shakmaeva, M., Bulina, O., & Egorova, I. (2025). CORONAVIRUS INFECTION AND COVID-19 IN CHILDREN. PART 1. EPIDEMIOLOGY, ETIOLOGY, PATHOGENESIS. Children’s Medicine of the North-West, 12(4), 21-38. https://doi.org/10.56871/CmN-W.2024.86.55.002
Section
Lectures