FEATURES OF MILD AND MODERATE COURSE OF COVID-19 IN CHILDREN OF DIFFERENT AGES
Abstract
Introduction. Despite the fact that the pandemic of the new coronavirus infection has ended, this problem has not lost its relevance. In Russia, 24,645,303 people have been infected with the new coronavirus infection during the entire course. As of November 2024, this virus has been identified in 35,689 people in the Russian Federation. COVID-19 is currently subject to general infectious laws such as epidemiology and seasonality, and the ability of this virus to transmit and quickly mutate also contributes to the prevalence of this infection. Objective. To describe the clinical features of mild and moderate course of COVID-19 in children of different ages. Materials and methods. Complaints and clinical picture of the disease were studied in 270 children of different age groups with a new coronavirus infection confirmed by PCR. Results. Analysis of patient complaints at the onset of the disease showed that children with Covid-19 most often complained of an increase in body temperature (75.2%). Respiratory complaints were noted with high frequency: runny nose (62.2%), cough (48.1%), less common were sore throat (17.4%) and loss of smell (anosmia) (11.5%), chest pain (5.2%), loss of taste (ageusia) (3.7%). The incidence of shortness of breath was 1.9%. Conclusions. The leading complaints in children with confirmed new coronavirus infection at the onset of the disease were respiratory complaints, which do not allow distinguishing this disease from a banal acute respiratory viral infection of mild to moderate severity, with symptoms relieving by the 14th day of the disease. The incidence of pneumonia among patients is 28.14%, the most significant number of pneumonias was detected in adolescents (p=0.013); they also have the most frequent cough.
References
World Health Organization. COVID-19: vulnerable and high risk groups Available at: https://www.who.int/westernpacific/emergencies/covid-19/information/high-risk-groups#:~:text=COVID%2D19%20is%20often,their%20immune%20system.%E2%80%8B (Accessed May 18, 2021).
Felsenstein S., Hedrich Ch.M. COVID-19 in children and young people. Lancet Rheumatol. 2020;2(9):514–516. DOI: 10.1016/S2665-9913(20)30212-5.
She J., Liu L., Liu W. COVID-19 epidemic: Disease characteristics in children. J Med Virol. 2020;92(7):747–754. DOI: 10.1002/jmv.25807.
Bunyavanich S., Do A., Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020;32:2427–2429. DOI: 10.1001/jama.2020.8707.
Schouten L.R., van Kaam A.H., Kohse F., Veltkamp F., Bos L.D., de Beer F.M. et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Annals of Intensive. 2019;9(1):55. DOI: 10.1186/s13613-019-0529-4.
Cristiani L., Mancino E., Matera L., Nenna R., Pierangeli A., Scagnolari C., Midulla F. Will children reveal their secret? The coronavirus dilemma. Eur Respir J. 2020;55(4):2000749. DOI: 10.1183/13993003.00749-2020.
de Bree L.C.J., Koeken V.A.C.M., Joosten L.A.B., Aaby P., Benn Ch.S., van Crevel R., Netea M.G. Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol. 2018;39:35–43. DOI: 10.1016/j.smim.2018.06.002.
Benn C.S., Netea M.G., Selin L.K., Aaby P. A small jab — a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 2013;34:431–439. DOI: 10.1016/j.it.2013.04.004.
Bentley E.G., Kirby A., Sharma P., Kipar A., Mega D.F., Bramwell C. et al. SARS-CoV-2 Omicron-B.1.1.529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. Science. 2022;377(6604):428–433. DOI: 10.1126/science.abn8939.
Diamond M., Halfmann P., Maemura T., Iwatsuki-Horimoto K., Iida S., Kiso M. et al. The SARS-CoV-2 B.1.1.529 Omicron virus causes attenuated infection and disease in mice and hamsters. Res Sq. 2021 Dec 29:rs.3.rs-1211792. DOI: 10.21203/rs.3.rs-1211792/v1.
McMahan K., Giffin V., Tostanoski L.H., Chung B., Siamatu M., Suthar M.S. et al. Reduced Pathogenicity of the SARS-CoV-2 Omicron Variant in Hamsters. Med. 2022;3(4):262–268. DOI: 10.1016/j.medj.2022.03.004.
Османов И. М., Алексеева Е. И., Мазанкова Л. Н., Захарова И. Н. и др. Клинический протокол лечения детей с новой коронавирусной инфекцией (COVID-19), находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы. Под редакцией А.И. Хрипуна. М.: ГБУ НИИОЗММ ДЗМ; 2021.
Sobolewska-Pilarczyk M., Pokorska-Śpiewak M., Stachowiak A., Marczyńska M., Talarek E., Ołdakowska A. et al. COVID-19 infections in infants. Sci Rep. 2022;12(1):7765. DOI: 10.1038/s41598-022-11068-0.
King J.A., Whitten T.A., Bakal J.A., McAlister F.A. Symptoms associated with a positive result for a swab for SARS-CoV-2 infection among children in Alberta. CMAJ. 2021;193(1):E1–E9. DOI: 10.1503/cmaj.202065.
Maltezou H.C., Magaziotou I., Dedoukou X., Eleftheriou E., Raftopoulos V., Michos A. et al. Children and adolescents with SARS-CoV-2 infection: epidemiology, clinical course and viral loads. Pediatr Infect Dis J. 2020;39(12):388–392. DOI: 10.1097/INF.0000000000002899.
Mak P.Q., Chung K-S., Wong JS-C., Shek C-C., Kwan MY-W. Anosmia and ageusia: not an uncommon presentation of COVID-19 infection in children and adolescents. Pediatr Infect Dis J. 2020;39(8):199–200. DOI: 10.1097/INF.0000000000002718.
Xiao F., Tang M., Zheng X. et al. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831–1833.e3. DOI: 10.1053/j.gastro.2020.02.055.
Han C., Duan C., Zhang S. et al. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020;115(6):916–923. DOI: 10.14309/ajg.0000000000000664.
Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434–435. DOI: 10.1016/S2468-1253(20)30083-2.
Chen Y., Chen L., Deng Q. et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020;92(7):833–840. DOI: 10.1002/jmv.25825.
Полунина А.В., Дудурич В.В., Данилов Л.Г. и др. Особенности кишечного микробиома у детей при новой коронавирусной инфекции. Медицина: теория и практика. 2022;7(4):63–67. DOI: 10.56871/ MTP.2022.97.91.007.
Ling Y., Xu S.B., Lin Y.X. et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020;133(9):1039–1043. DOI: 10.1097/CM9.0000000000000774.
Полунина А.В., Шакмаева М.А., Иванов Д.О. и др. Состояние желудочно-кишечного тракта у детей при новой коронавирусной инфекции и цитокиновый статус. Есть ли связь? Children’s Medicine of the North-West. 2022;10(4):69–74.
Megyeri K., Dernovics Á., Al-Luhaibi Z.I.I., Rosztóczy A. COVID-19- associated diarrhea. World J Gastroenterol. 2021;27(23):3208–3222. DOI: 10.3748/wjg.v27.i23.3208.
Norman G.L., Navaz S.A., Kanthi Y. et al. Circulating Calprotectin as a Predictive and Severity Biomarker in Patients with COVID-19. Diagnostics (Basel). 2022;12(6):1324. DOI: 10.3390/diagnostics12061324.
Okuyucu M., Yalcin Kehribar D., Çapraz M. et al. The Relationship Between COVID-19 Disease Severity and Zonulin Levels. Cureus. 2022;14(8):e28255. DOI: 10.7759/cureus.28255.
Полунина А.В., Новикова В.П., Блинов А.Е. и др. Динамика уровня зонулина в стуле при инфекции COVID-19 и в постковидный период у детей. Инфекционные болезни. 2022;20(3):35–40. DOI: 10.20953/1729-9225-2022-3-35-40.
Русинова Д.С., Никонов Е.Л., Намазова-Баранова Л.С., Глазкова Г.П., Вишнева Е.А., Кайтукова Е.В., Привалова Т.Е. Первые результаты наблюдения за детьми, переболевшими COVID-19 в Москве. Педиатрическая фармакология. 2020;17(2):95–102. DOI: 10.15690/pf.v17i2.2095.