CLINICAL AND PATHOGENETIC SIGNIFICANCE OF HYPOTHERMIA

  • E.V. Shrayner Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • A.I. Khavkin Research Clinical Institute of Childhood. 62 Bolshaya Serpukhovskaya str., Moscow 115093 Russian Federation https://orcid.org/0000-0001-7308-7280
  • K.M. Nikolaychuk Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • A.S. Veremenko Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • I.D. Levchenko Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • P.Ya. Platonova Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • M.F. Novikova Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • A.S. Tumas Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • E.E. Vergunova Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • D.A. Lukichev Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
  • D.A. Sergeev Novosibirsk State University. 1 Pirogov str., Novosibirsk 630090 Russian Federation
Keywords: hypothermia, hibernation, haemostasis, coagulation, fibrinolysis, platelet haemostasis

Abstract

The article deals with the mechanisms of hypothermia influence on the haemostasis system, as well as adaptation of the haemostasis system in animals in the state of hibernation. The main attention is paid to the changes in the primary and secondary links of haemostasis, as well as in the fibrinolysis system at decreasing body temperature. Phenomena of slowing down of enzymatic activity in the blood coagulation cascade, changes in the morphology and function of platelets are considered. Particular attention is paid to the unique mechanisms of animal adaptation to the state of reduced temperature, including a decrease in the level of coagulation factors and activation of the fibrinolytic system during hibernation. The article also discusses potential medical applications of the knowledge gained, including improving platelet storage and preservation methods, developing strategies for managing therapeutic hypothermia, and new approaches to treating coagulopathies. Additionally, this article discusses the role of hypothermia in the regulation of haemostasis in patients undergoing severe trauma or major surgery.

References

Будник И.А. Механизмы нарушений гемостатического потенциала крови и пути его коррекции при геморрагических состояниях. Дис. … д-ра мед. наук. М.; 2019.

Budnik I.A. Mechanisms of blood hemostatic potential disorders and ways of its correction in hemorrhagic conditions. PhD thesis. Moscow; 2019. (In Russian).

Acosta-Lara P., Varon J. Therapeutic hypothermia in sepsis: to use or not to use? Am J Emerg Med. 2013;31(2):381–2. DOI: 10.1016/j.ajem.2012.09.017.

Bai L., Liu B., Ji C., Zhao S., Liu S., Wang R. et al. Hypoxic and Cold Adaptation Insights from the Himalayan Marmot Genome. iScience. 2019;11:519–530. DOI: 10.1016/j.isci.2018.11.034.

Bonis A., Anderson L., Talhouarne G., Schueller E., Unke J., Krus C. et al. Cardiovascular resistance to thrombosis in 13-lined ground squirrels. J Comp Physiol B. 2019;189(1):167–177. DOI: 10.1007/s00360-018-1186-x.

Chai-Adisaksopha C., Hillis C., Isayama T., Lim W., Iorio A., Crowther M. Mortality outcomes in patients receiving direct oral anticoagulants: a systematic review and meta-analysis of randomized controlled trials. J Thromb Haemost. 2015;13(11):2012–20. DOI: 10.1111/jth.13139.

Christos S., Naples R. Anticoagulation Reversal and Treatment Strategies in Major Bleeding: Update 2016. West J Emerg Med. 2016;17(3):264–70. DOI: 10.5811/westjem.2016.3.29294.

Cooper S., Lloyd S., Koch A., Lin X., Dobbs K., Thei­sen T. et al. Temperature effects on the activity, shape, and storage of platelets from 13-lined ground squirrels. J Comp Physiol B. 2017;187(5-6):815–825. DOI: 10.1007/s00360-017-1081-x.

Cooper S.T., Sell S.S., Fahrenkrog M., Wilkinson K., Howard D.R., Bergen H. et al. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels. Physiol Genomics. 2016;48(7):513–25. DOI: 10.1152/physiolgenomics.00120.2015.

Cooper S., Sell S., Nelson L., Hawes J., Benrud J.A., Kohlnhofer B.M. et al. Von Willebrand factor is reversibly decreased during torpor in 13-lined ground squirrels. J Comp Physiol B. 2016;186(1):131–9. DOI: 10.1007/s00360-015-0941-5.

Cooper S., Wilmarth P.A., Cunliffe J.M., Klimek J., Pang J., Tassi Yunga S. et al. Platelet proteome dynamics in hibernating 13-lined ground squirrels. Physiol Genomics. 2021;53(11):473–485. DOI: 10.1152/physiolgenomics.00078.2021.

De Vrij E.L., Bouma H.R., Henning R.H., Cooper S.T. Hibernation and hemostasis. Front Physiol. 2023;14:

DOI: 10.3389/fphys.2023.1207003.

de Vrij E.L., Bouma H.R., Goris M., Weerman U., de Groot A.P., Kuipers J. et al. Reversible thrombo­cytopenia during hibernation originates from storage and release of platelets in liver sinusoids. J Comp Physiol B. 2021;191(3):603–615. DOi: 10.1007/s00360-021-01351-3.

de Vrij E.L., Vogelaar P.C., Goris M., Houwertjes M.C., Herwig A., Dugbartey G.J. et al. Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS One. 2014;9(4):e93218. DOI: 10.1371/journal.pone.0093218.

Fernandez-Moure J.S., Van Eps J.L., Cabrera F.J., Barbosa Z., Medrano Del Rosal G., Weiner B.K. et al. Platelet-rich plasma: a biomimetic approach to enhancement of surgical wound healing. J Surg Res. 2017;207:33–44. DOI: 10.1016/j.jss.2016.08.063.

Gehrke S., Rice S., Stefanoni D., Wilkerson R.B., Nemkov T., Reisz J.A. et al. Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J Proteome Res. 2019;18(4):1827–1841. DOI: 10.1021/acs.jproteome.9b00018.

Gillen A.E., Fu R., Riemondy K.A., Jager J., Fang B., Lazar M.A. et al. Liver Transcriptome Dynamics During Hibernation Are Shaped by a Shifting Balance Between Transcription and RNA Stability. Front Physiol. 2021;12:662132. DOI: 10.3389/fphys.2021.662132.

Gonias S.L. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol. 2021;321(4):C721–C734. DOI: 10.1152/ajpcell.00269.2021.

Haverkamp F.J.C., Giesbrecht G.G., Tan E.C.T.H. The prehospital management of hypothermia — An up-to-date overview. Injury. 2018;49(2):149–164. DOI: 10.1016/j.injury.2017.11.001.

Hendriks K.D.W., Castela Forte J.N., Kok W.F., Mungroop H.E., Bouma H.R., Scheeren T.W.L. et al. Mild hypothermia during cardiopulmonary bypass assisted CABG is associated with improved short- and long-term survival, a 18-year cohort study. PLoS One. 2022;17(8):e0273370. DOI: 10.1371/journal.pone.0273370.

Hendriks K.D.W., Joschko C.P., Hoogstra-Berends F., Heegsma J., Faber K.N., Henning R.H. Hibernator-Derived Cells Show Superior Protection and Survival in Hypothermia Compared to Non-Hibernator Cells. Int J Mol Sci. 2020;21(5):1864. DOI: 10.3390/ijms21051864.

Iles T.L., Laske T.G., Garshelis D.L., Iaizzo P.A. Blood clotting behavior is innately modulated in Ursus americanus during early and late denning relative to summer months. J Exp Biol. 2017;220(Pt 3):455–459. DOI: 10.1242/jeb.141549.

Itenov T.S., Johansen M.E., Bestle M., Thormar K., Hein L., Gyldensted L. et al. Cooling and Surviving Septic Shock (CASS) Trial Collaboration. Induced hypothermia in patients with septic shock and respiratory failure (CASS): a randomised, controlled, open-label trial. Lancet Respir Med. 2018;6(3):183–192. DOI: 10.1016/S2213-2600(18)30004-3.

Johansen M.E., Jensen J.U., Bestle M.H., Ostrowski S.R., Thormar K., Christensen H. et al. Mild induced hypother­mia: effects on sepsis-related coagulopathy–results from a randomized controlled trial. Thromb Res. 2015;135(1):

–82. DOI: 10.1016/j.thromres.2014.10.028.

Kiekkas P., Fligou F., Igoumenidis M., Stefanopoulos N., Konstantinou E., Karamouzos V. et al. Inadvertent hypo­thermia and mortality in critically ill adults: Systematic review and meta-analysis. Aust Crit Care. 2018;31(1):12–22. DOI: 10.1016/j.aucc.2017.01.008.

Lebois M., Josefsson E.C. Regulation of platelet lifespan by apoptosis. Platelets. 2016;27(6):497–504. DOI: 10.3109/09537104.2016.1161739.

Liu Y., Wang B., Wang L., Vikash V., Wang Q., Rog­gendorf M. et al. Transcriptome Analysis and Com­parison of Marmota monax and Marmota himalayana. PLoS One. 2016;11(11):e0165875. DOI: 10.1371/journal.pone.0165875.

Ou J., Ball J.M., Luan Y., Zhao T., Miyagishima K.J., Xu Y. et al. iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell. 2018;173(4):851–863.e16. DOI: 10.1016/j.cell.2018.03.010.

Stolla M., Bailey S.L., Fang L., Fitzpatrick L., Gettinger I., Pellham E. et all. Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C-stored platelets. Transfusion. 2020;60(3):613–621. DOI: 10.1111/trf.15669.

Splinter N., Mancosky A., Laffin C., Clement M., Nisius M., Arbs B. et al. Platelets from 13-lined ground squirrels are resistant to cold storage lesions. J Comp Physiol B. 2023;193(1):125–134. DOI: 10.1007/s00360-022-01469-y.

Talaei F., Bouma H.R., Van der Graaf A.C., Strijkstra A.M., Schmidt M., Henning R.H. Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway. PLoS One. 2011;6(7):e22568. DOI: 10.1371/journal.pone.0022568.

Thienel M., Müller-Reif J.B., Zhang Z., Ehreiser V., Huth J., Shchurovska K. et al. Immobility-asso­ciated thromboprotection is conserved across mammalian species from bear to human. Science. 2023;380(6641):178–187. DOI: 10.1126/science.abo5044.

Van Poucke S., Stevens K., Marcus A.E., Lancé M. Hypothermia: effects on platelet function and hemostasis. Thromb J. 2014;12(1):31. DOI: 10.1186/s12959-014-0031-z.

Vardon F., Mrozek S., Geeraerts T., Fourcade O. Acci­dental hypothermia in severe trauma. Anaesth Crit Care Pain Med. 2016;35(5):355–361. DOI: 10.1016/j.accpm.2016.05.001.

Versteeg H.H., Heemskerk J.W., Levi M., Reitsma P.H. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58. DOI: 10.1152/physrev.00016.2011.

Welinder K.G., Hansen R., Overgaard M.T., Brohus M., Sønderkær M., von Bergen M. et al. Biochemical Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown Bear Ursus arctos. J Biol Chem. 2016;291(43):22509–22523. DOI: 10.1074/jbc.M116.742916.

White K., Faruqi U., Cohen AAT. New agents for DOAC reversal: a practical management review. Br J Cardiol. 2022;29(1):1. DOI: 10.5837/bjc.2022.001.

Published
2025-06-18
How to Cite
Shrayner, E., Khavkin, A., Nikolaychuk, K., Veremenko, A., Levchenko, I., Platonova, P., Novikova, M., Tumas, A., Vergunova, E., Lukichev, D., & Sergeev, D. (2025). CLINICAL AND PATHOGENETIC SIGNIFICANCE OF HYPOTHERMIA. Medicine: Theory and Practice, 10(1), 58-67. https://doi.org/10.56871/MTP.2025.91.98.006
Section
REVIEWS

Most read articles by the same author(s)