Clinical and genetic aspects of defi ciency rickets
Abstract
Deficiency rickets, despite the successes in its prevention and treatment, remains a pressing problem for pediatrics and health care. Until now, there is uncertainty in the choice of prophylactic and therapeutic doses of vitamin D. It is due to the fact that there is individual, constitutionally determined differences both in the predisposition to the development of the disease and in the individual degree of the body’s response to the vitamin preparation. Genomic characteristics of the body play a significant role in such individual differences. The review presents an analysis of modern literature devoted to the influence of genetic factors on the formation of individual predisposition to the development of deficiency rickets, as well as sensitivity to vitamin D preparations. For this purpose, a search was made in electronic databases for publications that meet the modern requirements of evidence-based medicine. Both traditional approaches (family and twin analysis) and the latest methods — genome-wide screening (GWAS) with the identification of genetic polymorphisms, as well as the detection of epigenetic markers, have proven the relationship between the genetic cause and the functioning of the main modulators of bone metabolism, as well as with the characteristics of the course of deficiency rickets. However, the number of publications investigating the direct relationship of genetic markers with the clinical aspects of deficiency rickets was limited. The genetic component plays a significant role in the formation of the main modulators of calcium and phosphorus metabolism. However, the degree of its influence on the occurrence of deficiency rickets has not yet been clearly quantified.
References
Гринхальх Т. Основы доказательной медицины: пер. с англ. 5-е изд. М.: ГЭОТАР-Медиа; 2024.
Кириченко Н.Н., Закревский В.В., Коновалова И.А., Сметанин А.В., Дарьина Н.И., Плахотская Ж.В. Лабораторная оценка витаминной обеспеченности организма военнослужащих в Арктической зоне Российской Федерации. Вестник Российской Военно-медицинской академии. 2018;4(64):86–89.
Сергеев Ю.С. Клинический диагноз в педиатрии (формулировки, классификации): руководство для врачей. 2-е изд., испр. и доп. М.: ГЭОТАР-Медиа; 2021.
Сергеев Ю.С., Арсентьев В.Г., Шабалов Н.П., Анциферова Е.С. Недостаточность витамина D у детей раннего возраста. Реалии сегодняшнего дня. Педиатр. 2021;12(6):5–14.
Acar S., Demir K., Shi Y. Genetic Causes of Rickets. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):88–105.
Ahn J., Yu K., Stolzenberg-Solomon R., Simon K.C., McCullough M.L. et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–45.
Antonucci R., Locci C., Clemente M.G., Chicconi E., Antonucci L. Vitamin D deficiency in childhood: old lessons and current challenges. J Pediatr Endocrinol Metab. 2018;31(3):247–260.
Arguelles L.M., Langman C.B., Ariza A.J., Ali F.N., Dilley K. et al. Heritability and environmental factors affecting vitamin D status in rural Chinese adolescent twins. J Clin Endocrinol Metab. 2009;94(9):3273–81.
Beckett E.L., Duesing K., Martin C., Jones P., Furst J. et al. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry. J Nutr Intermediary Metabolism. 2016; 6:8–15. Доступен по: https://daneshyari.com/article/preview/2688592.pdf (дата обращения 08.05.2024 г.).
Carlberg C., Haq A. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol. 2018;175:12–17.
Carpenter T.O., Shaw N.J., Portale A.A., Ward L.M., Abrams S.A. et al. Rickets. Nat Rev Dis Primers. 2017;3:17101.
Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.
Dahash B.A., Sankararaman S. Rickets. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
El Kholy M., Elsedfy H., Fernández-Cancio M., Hamza R.T., Amr N.H. et al. Nutritional rickets: vitamin D, calcium, and the genetic make-up. Pediatr Res. 2017;81(2):356–363.
Forouhari A., Heidari-Beni M., Veisi S., Poursafa P., Kelishadi R. Effect of epigenetics on vitamin D levels: a systematic review until December 2020. Arch Public Health. 2023;81(1):106.
Giustina A., Bilezikian J.P., Adler R.A., Banfi G., Bikle D.D. et al. Consensus statement on vitamin D status assessment and supplementation: whys, whens and hows. Endocr Rev. 2024:bnae009.
Goltzman D. Functions of vitamin D in bone. Histochem Cell Biol. 2018;149(4):305–312.
Haffner D., Leifheit-Nestler M., Grund A., Schnabel D. Rickets guidance: part I — diagnostic workup. Pediatr Nephrol. 2022;37(9):2013–36.
Haffner D., Leifheit-Nestler M., Grund A., Schnabel D. Rickets guidance: part II — management. Pediatr Nephrol. 2022;37(10):2289–2302.
Hossein-nezhad A., Spira A., Holick M.F. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One. 2013;8(3):e58725.
Hunter D., De Lange M., Snieder H., MacGregor A.J., Swaminathan R. et al. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res. 2001;16(2):371–8.
Jiang X., O’Reilly P.F., Aschard H., Hsu Y.H., Richards J.B. et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun. 2018;9(1):260.
Karlic H., Varga F. Impact of vitamin D metabolism on clinical epigenetics. Clin Epigenetics. 2011;2(1):55–61.
Krasniqi E., Boshnjaku A., Wagner K.H., Wessner B. Association between polymorphisms in vitamin D pathway-related genes, vitamin D status, muscle mass and function: a systematic review. Nutrients. 2021;13(9):3109.
Munns C.F., Shaw N., Kiely M., Specker B.L., Thacher T.D. et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415.
Ogunmwonyi I., Adebajo A., Wilkinson J.M. The genetic and epigenetic contributions to the development of nutritional rickets. Front Endocrinol (Lausanne). 2022;13:1059034.
Revez J.A., Lin T., Qiao Z., Xue A., Holtz Y. et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11(1):1647.
Rios-Leyvraz M., Thacher T.D., Dabas A., Elsedfy H.H., Baroncelli G.I., Cashman K.D. Serum 25-hydroxyvitamin D threshold and risk of rickets in young children: a systematic review and individual participant data meta-analysis to inform the development of dietary requirements for vitamin D. Eur J Nutr. 2024;63(3):673–695.
Uffelmann E., Huang Q.Q., Munung N.S., de Vries J., Okada Y. et al. Genome-wide association studies. Nat Rev Methods Primers. 2021;59:1–21. Доступен по: https://www.nature.com/articles/s43586-021-00056-9 (дата обращения 08.05.2024).
Usategui-Martín R., De Luis-Román D.A., Fernández-Gómez J.M., Ruiz-Mambrilla M., Pérez-Castrillón J.L. Vitamin D receptor (VDR) gene polymorphisms modify the response to vitamin D supplementation: a systematic review and meta-analysis. Nutrients. 2022;15;14(2):360.
Wang T.J., Zhang F., Richards J.B., Kestenbaum B., van Meurs J.B. et al. Common genetic determinants of vitamin d insufficiency: a genome-wide association study. Lancet. 2010; 376:180–8.
Zhang Y., Yang S., Liu Y., Ren L. Relationship between polymorphisms in vitamin D metabolism-related genes and the risk of rickets in Han Chinese children. BMC Med Genet. 2013;14:101.
Zhou J.C., Zhu Y., Gong C., Liang X., Zhou X., Xu Y., Lyu D. et al. The GC2 haplotype of the vitamin D binding protein is a risk factor for a low plasma 25-hydroxyvitamin D concentration in a Han Chinese population. Nutr Metab (Lond). 2019;16:5.