PATHOPHYSIOLOGICAL FEATURES OF GLIAL CELL CHANGES AND MARKERS OF BRAIN TISSUES DAMAGE IN TBI
Abstract
Traumatic brain injury (TBI) is the leading cause of mortality and psychiatric disorders among neurologic pathology. In many patients, TBI leaves long-term sequelae that may involve both mild cognitive impairment and severe disability. It is known that the mechanisms of damage in traumatic brain injury can be primary, related to the mechanical impact on the brain, and secondary, mainly caused by astrocytes, microglia and infiltrated immune cells from peripheral tissues that lead to neuronal and vascular dysfunction. Because these mechanisms, particularly secondary injury, remain incompletely understood, there are difficulties associated with the diagnosis and treatment of TBI. In search of a solution to this problem, substantial data on the quantification of biomarkers of traumatic brain injury have accumulated in recent decades, which may provide a clinically accessible window to study the mechanisms, diagnosis, monitoring, and prediction of brain injury outcomes. The article is a brief review of posttraumatic changes in brain tissue associated with ionic disturbances, activation of astro- and microglia, involvement of immune system cells, and major biomarkers of brain injury isolated from blood and cerebrospinal fluid.
References
Анников Ю.Г., Кром И.Л., Еругина М.В. Пациенты с перенесенной черепно-мозговой травмой об удовлетворенности реабилитацией. Психосоматические и интегративные исследования. 2019; 5(1): 102–2.
Дубровин И.А. и др. Судебно-медицинская экспертиза черепно-мозговой травмы. Учебное пособие для вузов. Litres; 2019.
Емельянов А.Ю., Андреева Г.О., Барсуков И.Н. Особенности клинических проявлений декомпенсации посттравматических астений. Неотложные состояния в неврологии: современные методы диагностики и лечения. 2017: 139–9.
Зудова А.И., Сухоросова А.Г., Соломатина Л.В. Черепно-мозговая травма и нейровоспаление: обзор основных биомаркеров. Acta Biomedica Scientifica. 2020; 5(5): 60–7.
Каде А.Х. и др. Динамика интерлейкина-6 у больных с изолированной черепно-мозговой травмой средней и тяжелой степени тяжести. Международный журнал экспериментального образования. 2014; 5(2): 23–4.
Касимов Р.Р. и др. Клинико-эпидемиологическая характеристика тяжелой травмы у военнослужащих в мирное время. Скорая медицинская помощь. 2022; 23(2): 4–13.
Коновалов А.Н., Лихтерман Л.Б., Потапов А.А. Черепно-мозговая травма: Клиническое руководство. М.: Медицина. 2001; 2.
Крылов В.В., Пурас Ю.В. Патофизиологические механизмы 4 вторичного повреждения мозга при черепно-мозговой травме. Неврологический журнал. 2013; 18(4): 4–7.
Лихтерман Л.Б. Учение о последствиях черепно-мозговой травмы. Нейрохирургия. 2019; 21(1): 83–9.
Маслова Н.Н., Семакова Е.В., Мешкова Р.Я. Состояние цитокинового статуса больных в разные периоды травматической болезни головного мозга. Иммунопатология, аллергология, инфектология. 2001; 3: 26–30.
Музлаев Г.Г. и др. Динамика интерлейкина-1β у больных с изолированной черепно-мозговой травмой средней и тяжелой степени тяжести. Международный журнал экспериментального образования. 2014; 5(2): 24–5.
Овсянников Д.М. и др. Социальные и эпидемиологические аспекты черепно-мозговой травмы. Саратовский научно-медицинский журнал. 2012; 8(3): 777–85.
Пошатаев К.Е. Эпидемиологические и клинические аспекты черепно-мозговой травмы. Дальневосточный медицинский журнал. 2010; 4: 125–8.
Трофимов А.О., Кравец Л.Я. Апоптоз нейронов при черепно-мозговой травме. Современные технологии в медицине. 2010; 3: 92–7.
Atkins C.M. et al. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism. 2006; 26(12): 1507–18.
BK S. Glutamate. calcium, and free radicals as mediators of ischemic brain damage. Ann Thorac Surg. 1995; 59: 1316–20.
Blyth B.J. et al. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. Journal of neurotrauma. 2009; 26(9): 1497–1507.
Bogoslovsky T. et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. Journal of neurotrauma. 2017; 34(1): 66–73.
Böhmer A.E. et al. Neuron-specific enolase, S100B, and glial
fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery. 2011; 68(6): 1624–31.
Burda J.E., Bernstein A.M., Sofroniew M.V. Astrocyte roles in traumatic brain injury. Experimental neurology. 2016; 275: 305–15.
Calcagnile O., Anell A., Undén J. The addition of S100B to guidelines for management of mild head injury is potentially cost saving. BMC neurology. 2016; 16: 1–7.
Cao T. et al. Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience. 2012; 225: 65–75.
Colton C.A. Heterogeneity of microglial activation in the innate immune response in the brain. Journal of neuroimmune pharmacology. 2009; 4: 399–418.
David S., Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews Neuroscience. 2011; 12(7): 388–99.
Demediuk P., Daly M.P., Faden A.I. Free amino acid levels in laminectomized and traumatized rat spinal cord. Trans. Am. Soc. Neurochem. 1988; 19: 176.
Dong X.Q. et al. Copeptin is associated with mortality in patients with traumatic brain injury. Journal of Trauma and Acute Care Surgery. 2011; 71(5): 1194–8.
Dong X.Q. et al. Resistin is associated with mortality in patients with traumatic brain injury. Critical care. 2010; 14(5): 1–5.
Ercole A. et al. Kinetic modelling of serum S100b after traumatic brain injury. BMC neurology. 2016; 16(1): 1–8.
Farooqui A.A., Ong W.Y., Horrocks L.A. Neurochemical aspects of excitotoxicity. New York: Springer. 2008: 1–290.
Gayen M. et al. Exosomal microRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. International journal of molecular sciences. 2020; 21(7): 2312.
Guedes V.A. et al. Exosomal neurofilament light: A prognostic biomarker for remote symptoms after mild traumatic brain injury? Neurology. 2020; 94(23): e2412–23.
Hanisch U.K., Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature neuroscience. 2007; 10(11): 1387–94.
Jeong H.K. et al. Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes. Molecular Brain. 2013; 6(1): 1–16.
Karve I.P., Taylor J.M., Crack P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016; 173(4): 692–702. DOI: 10.1111/bph.13125. Epub 2015 Apr 24. PMID: 25752446; PMCID: PMC4742296.
Kellermann I. et al. Early CSF and serum S100B concentrations for outcome prediction in traumatic brain injury and subarachnoid hemorrhage. Clinical neurology and neurosurgery. 2016; 145: 79–83.
Kierdorf K. et al. Microglia in steady state. The Journal of clinical investigation. 2017; 127(9): 3201–9.
Kim J. et al. Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. Journal of neurochemistry. 2010; 115(5): 1161–71.
Kumar A., Loane D. J. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain, behavior, and immunity. 2012; 26(8): 1191–1201.
Laird M. D. et al. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia. 2014; 62(1): 26–38.
Liliang P.C. et al. τ proteins in serum predict outcome after severe traumatic brain injury. Journal of Surgical Research. 2010; 160(2): 302–7.
Lin Z. et al. Soluble vascular adhesion protein-1: decreased activity in the plasma of trauma victims and predictive marker for severity of traumatic brain injury. Clinica Chimica Acta. 2011; 412(17-18): 1678–82.
Michinaga S. et al. Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology. 2020; 175: 108182.
Mokhtari M. et al. Effect of memantine on serum levels of neuron-specific enolase and on the Glasgow Coma Scale in patients with moderate traumatic brain injury. The Journal of Clinical Pharmacology. 2018; 58(1): 42–7.
Nekludov M. et al. Brain-derived microparticles in patients with severe isolated TBI. Brain injury. 2017; 31(13-14): 1856–62.
Olczak M. et al. Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic science international. 2017; 280: 1–7.
Ondruschka B. et al. Acute phase response after fatal traumatic brain injury. International journal of legal medicine. 2018; 132: 531–9.
Pabón M.M. et al. Brain region-specific histopathological effects of varying trajectories of controlled cortical impact injury model of traumatic brain injury. CNS Neuroscience & Therapeutics. 2016; 22(3): 200–11.
Pan H. et al. The absence of nrf2 enhances nf-b-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators of inflammation. 2012; 2012.
Pandey S. et al. A prospective pilot study on serum cleaved tau protein as a neurological marker in severe traumatic brain injury. British journal of neurosurgery. 2017; 31(3): 356–63.
Semple B.D. et al. Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. Journal of Neuroscience. 2017; 37(33): 7864–77.
Shahim P. et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology. 2020; 95(6): e623–36.
Shahim P., Zetterberg H. Neurochemical markers of traumatic brain injury: relevance to acute diagnostics, disease monitoring, and neuropsychiatric outcome prediction. Biological psychiatry. 2022; 91(5): 405–12.
Sundström E., Mo L.L. Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. Journal of neurotrauma. 2002; 19(2): 257–66.
Thelin E.P. et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Critical care. 2016; 20(1): 1–15.
Thompson W.H. et al. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury. NeuroImage: Clinical. 2016; 12: 1004–12.
Wang K.Y. et al. Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury. Clinica chimica acta. 2012; 413(21-22): 1737–41.
Wolf H. et al. Preliminary findings on biomarker levels from extracerebral sources in patients undergoing trauma surgery: potential implications for TBI outcome studies. Brain Injury. 2016; 30(10): 1220–5.
Wu G. Q. et al. The prognostic value of plasma nesfatin-1 concentrations in patients with traumatic brain injury. Clinica Chimica Acta. 2016; 458: 124–8.
Zetterberg H., Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nature reviews neurology. 2016; 12(10): 563–74.
Žurek J., Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta neurochirurgica. 2012; 154: 93–103.
URL.: https://www.fda.gov/news-events/press-announcements/fda-authorizesmarketing-first-blood-test-aid-evaluation-concussionadults (дата обращения: 01.08.23)
Copyright (c) 2023 Russian Biomedical Research

This work is licensed under a Creative Commons Attribution 4.0 International License.