OSTEOSARCOMA OF THE SPINE — MODERN CLASSIFICATION, THE ROLE OF THE mTOR SIGNALING PATHWAY, PROSPECTS FOR THERAPY (LITERATURE REVIEW)

  • I.A. Baranov North-Western Medical University named after I.I. Mechnikov. Kirochnaya 41, Saint Petersburg, Russian Federation, 191015
  • D.P. Gladin Saint Petersburg State Pediatric Medical University. 2 Lithuania, Saint Petersburg 194100 Russian Federation https://orcid.org/0000-0003-4957-7110
  • V.V. Usikov Saint-Petersburg Clinical Hospital of the Russian Academy of Sciences. 72 Torez ave., 194017 Saint Petersburg Russian Federation
  • N.S. Kozlova North-Western Medical University named after I.I. Mechnikov. Kirochnaya 41, Saint Petersburg, Russian Federation, 191015
Keywords: osteosarcoma of the spine, mTOR signaling pathway, mTORC1, mTORC2, rapamycin, autophagy inhibitors, metformin, catalytic inhibitors of mTOR, PP242, classification of spinal neoplasms

Abstract

Despite their rare occurrence, spinal tumors pose a serious problem for public health due to the difficulty of their diagnosis and treatment. Neoplasms of the spine are divided into primary and secondary tumors (metastases) by origin. Osteosarcoma is of great interest among primary tumors. Osteosarcoma is a malignant osteogenic tumor consisting of neoplastic cells that produce osteoid. Osteosarcoma of the spine develops quite rarely, however, it is characterized by a high degree of malignancy, local aggressiveness, a tendency to metastasis, as well as a long asymptomatic course. The prognosis for osteosarcoma of the spine remains extremely unfavorable. All this indicates the need to develop new methods and treatment regimens for osteosarcoma. One of the promising areas is the development of drugs that affect the intracellular signaling pathway mTOR. mTOR is a serine/threonine protein kinase that forms a catalytic subunit of two different protein complexes: mTORC1 and mTORC2. It has been established that this signaling pathway regulates the processes of vital activity of the cell and the entire organism at the deepest level. Its hyperactivation plays an important role in carcinogenesis, including in the pathogenesis of osteosarcoma. In this regard, it was proposed to use drugs that affect the mTOR signaling pathway for its therapy. Such drugs include: rapamycin, everolimus, temsirolimus, catalytic inhibitors of mTOR (MLN0128 and PP242), micro-RNA (miR-223 and miR-101), oleanolic acid, spautin-1, metformin and so on. It is proposed to combine these drugs with classical chemotherapy to achieve better results in the treatment of osteosarcoma. At the moment, it is necessary to select rational combinations and dosages of drugs.

References

Закондырин Д.Е., Гринь А.А. Опухоли позвоночника: обзор литературы. Нейрохирургия. 2022;24(2):94–104.

Dreghorn C.R., Newman R.J., Hardy G.J., Dickson R.A. Primary tumours of the axial skeleton. Experience of the Leeds Regional Bone Tumour Registry. Spine (Phila Pa 1976). 1990;15(2):137–140.

Евсютина Е.П., Диникина Ю.В., Белогурова М.Б., Александрович Ю.С. Профилактика токсичности при химиотерапии высокими дозами метотрексата у детей. Педиатр. 2019;10(2):89–98. DOI: 10.17816/PED10289-98.

Мусаев Э.Р., Алиев М.Д., Щипахин С.А. Первичные опухоли позвоночника. Саркомы костей, мягких тканей и опухоли кожи. 2012;3:3–10.

Могила В.В., Волкодав О.В., Фурсов И.В. Общая характеристика опухолей спинного мозга у взрослых. Таврический медико-биологический вестник. 2017;3-1(20):120–124.

Masaryk T.J. Neoplastic disease of the spine. Radiol. Clin. North Am. 1991;29:829–845.

Ropper A.E., Cahill K.S., Hanna J.W. et al. Primary vertebral tumors: a review of epidemiologic, histological, and imaging findings, Part I: benign tumors. Neurosurgery. 2011;69(6):1171–80.

Enneking W.E., Spanier S.S., Goodman M.A. A System for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res. 1980;153:106–120.

Ropper A.E., Cahill K.S., Hanna J.W. et al. Primary vertebral tumors: a review of epidemiologic, histological and imaging findings, part II: locally aggressive and malignant tumors. Neurosurgery. 2012;70(1):211–219.

Бенцион Д.Л., Шахнович М.В., Чудиновских В.А. и др. Однофракционная экстракраниальная стереотаксическая радиотерапия при метастазах в позвоночник. Сборник тезисов 2-го Всероссийского съезда по радиохирургии и стереотаксической радиотерапии. 2016:16–17.

Глумов Е.Э., Гольдшмидт П.Р., Джабаров Ф.Р., Шелехов К.К. Опыт использования различных вариантов фракционирования радиотерапии при метастазах в кости. Главный врач Юга России. 2018;2(60):53–55.

Boriani S., Weinstein J.N., Biagini R. Primary bone tumours of the spine. Terminology and surgical staging. Spine. 1997;22:1036–1044.

Tomita K., Kawahara N., Kobayashi T. et al. Surgical strategy for spinal metastases. Spine (Phila Pa 1976). 2001;26(3):298–306.

Пронин И.Н. Диагностика новообразований спинного мозга и позвоночника. Вестн. РОНЦ им. Н.Н. Блохина РАМН. 2004;1-2:31–37.

Missenard G., Bouthors C., Fadel E., Court C. Surgical strategies for primary malignant tumors of the thoracic and lumbar spine. Orthop Traumatol Surg Res. 2020;106(1S):S53–S62.

Самылина Д.А. Сравнительная оценка методов лучевой диа­гностики гемангиомы позвоночника. Бюллетень медицинских интернет-конференций. 2021;9(11):211.

Smith E., Hegde G., Czyz M. et al. A Radiologists' Guide to En Bloc Resection of Primary Tumors in the Spine: What Does the Surgeon Want to Know? Indian J Radiol Imaging. 2022;32(2):205–212.

Фадеев Е.М., Усиков В.В., Хайдаров В.М., Филиппов К.В., Купарадзе И.М. Хирургическое лечение больных при злокачественных опухолевых поражениях позвоночника. Здоровье и образование в XXI веке. 2020;12(22):97–101.

Рогожин Д.В., Булычева И.В., Коновалов Д.М. и др. Классическая остеосаркома у детей и подростков. Архив патологии. 2015;77(5):68 74.

Международная классификация болезней — онкология (МКБ-О), 3-е издание, 1-й пересмотр. Сост. Э. Фритц, К. Перси, Э. Джек и др.; пер. с англ. А.В. Филочкиной; под ред. А.М. Беляева, О.Ф. Чепика, А.С. Артемьевой, А.А. Барчука, Ю.И. Комарова. СПб.: Вопросы онкологии; 2017.

Алиев М.Д., Сушенцов Е.А. Современная онкоортопедия. Саркомы костей, мягких тканей и опухоли кожи. 2012;4:3–10.

Sunderasan N., Schiller A.L., Rosenthal D.I. Osteosarcoma of the spine. In: Sunderasan N., Schmidek H.H., Schiller A.L., Rosenthal D.I., eds. Tumors of the Spine: Diagnosis and Clinical Management. Philadelphia, PA: W.B. Saunders Company. 1990;128–145.

Dekutoski M.B., Clarke M.J., Rose P. et al. Osteosarcoma of the spine: prognostic variables for local recurrence and overall survival, a multicenter ambispective study. J Neurosurg Spine. 2016;25:59–68.

Алиев М.Д., Бохян А.Ю., Иванов С.М. и др. Клинические рекомендации по диагностике и лечению больных с первичными злокачественными опухолями кости. Ассоциации онкологов России. М.; 2014.

Krakoff I.H. Cancer chemotherapeutic agents. CA Cancer J Clin. 1977;27(3):130–143.

Баранов И.А., Гладин Д.П., Козлова Н.С. Взаимосвязь гиперактивации сигнального пути mTOR, процессов старения и патогенеза COVID-19 (обзор литературы). Российские биомедицинские исследования. 2023;8(2):64–77.

Powell J.D., Pollizzi K.N., Heikamp E.B., Horton M.R. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39–68.

Saxton R.A., Sabatini D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168(6):960–976.

Bange J., Cheburkin Y., Knyazeva T. et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Research. 2002;62(3):840–847. EDN: YVPVKD.

Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology. 2018;64(2):127–134.

Баранов И.А., Гладин Д.П., Козлова Н.С. Рациональное сочетание онколитических вирусов и аналогов рапамицина в терапии рака (литературный обзор). Российские биомедицинские исследования. 2024;9(1):65–77.

Huang S. mTOR Signaling in Metabolism and Cancer. Cells. 2020;9(10):2278.

Ma X.M., Yoon S.O., Richardson C.J. et al. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 2008;133(2):303–313.

Dorrello N.V., Peschiaroli A., Guardavaccaro D. et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006;314(5798):467–471.

Holz M.K., Ballif B.A., Gygi S.P., Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dyna­mic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–580.

Dominick G., Bowman J., Li X. et al. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell. 2017;16(1):52–60.

Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–141.

Martina J.A., Chen Y., Gucek M., Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–914.

Ding L., Congwei L., Bei Q. et al. mTOR: An attractive therapeutic target for osteosarcoma? Oncotarget. 2016;7:50805–50813.

García-Martínez J.M., Alessi D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serumand glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416(3):375–385.

Hu, K., Dai, H., Qiu, Z. mTOR signaling in osteosarcoma: Oncoge­nesis and therapeutic aspects (Review). Oncol Rep. 2016;36:1219–1225.

Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–1101.

Laberge R.M., Sun Y., Orjalo A.V. et al. MTOR regulates the protu­morigenic senescence-associated secretory phenotype by promo­ting IL1A translation. Nat Cell Biol. 2015;17(8):1049–1061.

Slotkin E.K., Patwardhan P.P., Vasudeva S.D. et al. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma. Mol Cancer Ther. 2015;14:395–406.

Wang X., Lai P., Zhang Z. et al. Targeted inhibition of mTORC2 prevents osteosarcoma cell migration and promotes apoptosis. Oncol Rep. 2014;32:382–388.

Lin S., Shao N.N., Fan L. et al. Effect of microRNA-101 on proli­feration and apoptosis of human osteosarcoma cells by targeting mTOR. J Huazhong Univ Sci Technolog Med Sci. 2014;34:889–895.

Li G., Cai M., Fu D. et al. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem. 2012;30:1481–1490.

Zhou R., Zhang Z., Zhao L. et al. Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells. J Orthop Res. 2011;29(6):846–852.

Horie R., Nakamura O., Yamagami Y. et al. Apoptosis and antitumor effects induced by the combination of an mTOR inhibitor and an autophagy inhibitor in human osteosarcoma MG63 cells. Int J Oncol. 2016;48:37–44.

Chen X., Hu C., Zhang W. et al. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro. Tumour Biol. 2015;36:9873–9883.

Zhou R., Ma Y., Qiu S. et al. Metformin promotes cell proliferation and osteogenesis under high glucose condition by regulating the ROS AKT mTOR axis. Mol Med Rep. 2020;22(4):3387–3395.

Published
2025-06-26
How to Cite
Baranov, I., Gladin, D., Usikov, V., & Kozlova, N. (2025). OSTEOSARCOMA OF THE SPINE — MODERN CLASSIFICATION, THE ROLE OF THE mTOR SIGNALING PATHWAY, PROSPECTS FOR THERAPY (LITERATURE REVIEW). Russian Biomedical Research, 10(1), 57-69. https://doi.org/10.56871/RBR.2025.88.89.007
Section
REVIEWS

Most read articles by the same author(s)