MEASUREMENT OF EXCESSIVE LENGTHENING OF THE INTERNAL CAROTID ARTERY AT ITS PATHOLOGICAL TORTUOSITY. DETERMINATION OF OPTIMAL SURGICAL TACTICS
Abstract
Background. Pathological tortuosities of internal carotid arteries are the second most frequent among all causes of cerebrovascular diseases and are a significant medical and social problem. The study of internal carotid artery anomaly, its role and place in the development of acute and chronic cerebral circulatory disorders, and the development of optimal treatment methods is an urgent problem of vascular surgery requiring scientific resolution. Material and methods. A clinical observation is presented: we give calculations and reconstruction variant for pathological lengthening of the internal carotid artery. Patient S., 57 years old, was admitted on emergency indications with clinical picture of acute cerebral circulation disorder (ACCD) in the left SMA basin in June 2021. She complained of dizziness when changing body position, which she had been experiencing for 5 months prior to hospitalisation. Study results. Ultrasound duplex scanning (USDS) of the brachiocephalic arteries (BCA) revealed pathological deformations of the internal carotid arteries: bilateral haemodynamically significant pathological deformations of the internal carotid arteries were detected (on the right — coiling of the C1c segment of the BCA, on the left there was a combination of C-shaped tortuosity of the C1c segment and distal coiling of the C1d segment according to the A. Boutillier classification). Boutillier). Based on the original images, VRT (volume visualisation) and MPR reconstructions (multiplanar reformatting) were performed in a three-plane system (axial, sagittal and coronal). Measurement of the total length of the VCA was achieved by placing the start point at the common carotid artery bifurcation site and the end point at the origin of the middle cerebral artery. Conclusion. Based on the definition of excess VCA elongation, the anticipated reconstruction of SA tortuosity (degree of redress and level of VCA transposition) was predicted. The parameters will essentially supplement the preoperative planning of the reconstruction method, will allow to estimate and correlate the volume (length) of the SA allocation, including the proximal necessary border of the OSA, which can positively reduce the time of the SA transposition during the reconstruction and the duration of the intervention.
References
Левин О.С., Усольцева Н.И., Дударева М.И. Постинсультные когнитивные нарушения : механизмы развития и подходы к лечению // Журнал неврологии и психиатрии им. С.С. Корсакова. 2009. (7). C. 36–42.
Шойхет Я.Н., Хорев Н.Г., Куликов В.П. Патологическая извитость внутренней сонной артерии и ее хирургическое лечение // Проблемы клинической медицины. 2005; № 1. С. 80-90.
Покровский А.В., Белоярцев Д.Ф., Адырхаев З.А., Тимина И.Е., Лосик И.А. Отдаленные результаты реконструктивных операций при патологической деформации внутренней сонной артерии // Ангиология и сосудистая хирургия. 2012; 18 (1) Стр. 92-104.
Baz R.A. и др. Morphometry of the entire internal carotid artery on ct angiography // Medicina (Lithuania). 2021. № 8 (57).
Oliviero U. et al. Prospective evaluation of hypertensive patients with carotid kinking and coiling: An ultrasonographic 7-year study // Angiology. 2003. № 2 (54). P. 169–175.
Родин Ю.В. Исследование потоков крови при патологической S-образной извитости сонных артерий // Международный неврологический журнал. 2006. № 8 (4). C. 1–8.
Bouthillier A., Loveren H.R. Van, Keller J.T. Segments of the internal carotid artery: A new classification // Neurosurgery. 1996. № 3 (38). P. 425–433.
Jauch E. C. и др. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association // Stroke. 2013. № 3 (44). P. 870–947.
Gladstone D.J. et al. Management and outcomes of transient ischemic attacks in Ontario // Cmaj. 2004. № 7 (170). P. 1099–1104.
Wollschlaeger P.B., Wollschlaeger G. Anterior cerebral-internal carotid artery and middle cerebral-internal carotid artery ratios // Acta Radiol. Diagn. 1966; № 5. P. 615–620.
Spanos K., Petrocheilou G., Karathanos C., Labropoulos N., Mikhailidis D., Giannoukas A. Carotid Bifurcation Geometry and Atherosclerosis // Angiology. 2017;68. P 757–764.
Krejza J., Arkuszewski M., Kasner S.E., Weigele J., Ustymowicz A., Hurst R.W., Cucchiara B.L., Messe S.R. Carotid artery diameter in men and women and the relation to body and neck size // Stroke. 2006;37. P. 1103–1105.
Limbu Y.R., Gurung G., Malla R., Rajbhandari R., Regmi S.R. Assessment of carotid artery dimensions by ultrasound in non-smoker healthy adults of both sexes. Nepal Med. Coll. J. 2006;8. P. 200–203.
Chen Y.C. et al. Correlation Between Internal Carotid Artery Tortuosity and Imaging of Cerebral Small Vessel Disease // Frontiers in Neurology. 2020. № October (11). P. 1–7.
Spinardi L. et al. Intracranial arterial tortuosity in Marfan syndrome and loeys-dietz syndrome: Tortuosity index evaluation is useful in the differential diagnosis // American Journal of Neuroradiology. 2020. № 10 (41). P. 1916–1922.
Wang H.F. et al. Extracranial internal carotid artery tortuosity and body mass index // Frontiers in Neurology. 2017. № SEP (8). P. 508.