Organization of X-ray care for newborns with congenital defects abroad: status, advantages and problems
Abstract
Using the capabilities of diagnostic imaging in newborns, health care workers can achieve early detection, timely intervention and personalized approaches to treatment. Currently, when organizing X-ray care for newborns abroad, it is important to comply with strict safety standards, use modern equipment adapted for working with newborns, a differentiated approach to diagnostics taking into account the age and type of disease, constant introduction of innovative examination methods, ample use of telemedicine and electronic medical records to optimize the diagnostic process and exchange of information between institutions, as well as a multidisciplinary approach to the diagnosis and treatment of newborns. In Europe and America, research is actively carried out to improve visualization methods and develop new approaches to diagnosing diseases in newborns, including the use of alternative methods. At the same time, radiography does not lose its relevance. Despite the wide diagnostic capabilities of X-ray examination in children of the first month of life, it is used with caution due to the possible negative impact of X-rays on the child’s body. Doctors prescribe X-rays in exceptional cases when there is no alternative to using other methods and the disadvantages of the examination are negligible compared to making an incorrect diagnosis.
References
Makri T., Yakoumakis E., Papadopoulou D. et al. Radiation risk assessment in neonatal radiographic examinations of the chest and abdomen: a clinical and Monte Carlo dosimetry study. Phys Med Biol. 2006;51:5023–5033.
Hassan B. Infant Radiography: Techniques and Considerations. Pediatrician. 2006;36(2):126–35. DOI: 10.1007/s00247-006-0220-4.
Daniel B., Smith C. Neonatal imaging: Safety and efficacy considerations. Pediatric Radiology. 2020;26(2):e66–e72. DOI: 10.1016/j.radi.2019.10.013.
Armpilia C.I., Fife I.A.J., Croasdale P.L. Radiation dose quantities and risk in neonates in a special care baby unit. Br J Radiol. 2002;75:590–595. DOI: 10.1259/bjr.75.895.750590.
Baird R., Tessier R., Guilbault M.P., Puligandla P., Saint-Martin C. Imaging, radiation exposure, and attributable cancer risk for neonates with necrotizing enterocolitis. J Pediatr Surg. 2013;48:1000–1005. DOI: 10.1016/j.jpedsurg.
Smans K., Struelens L., Smet M., Bosmans H., Vanhavere F. Patient dose in neonatal units. Radiat Protect Dosimetry. 2008;131(1):143–147. DOI: 10.1093/rpd/ncn237.
Pearce M.S., Salotti J.A., Little M.P., McHugh K. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 380(9840):499–505. DOI: 10.1016/S0140-6736(12)60815-0.
Baysson H., Réhel J.L., Boudjemline Y., Petit J. et al. Risk of cancer associated with cardiac catheterization procedures during childhood: a cohort study in France. BMC Public Health. 2013;13:266. DOI: 10.1186/1471-2458-13-266.
Yu C.C. Radiation safety in the neonatal intensive care unit: too little or too much concern. Pediatr Neonatol. 2010;5(6):311–319. DOI: 10.1016/S1875-9572(10)60061-7.
Faulkner K., Barry J.L., Smalley P. Radiation dose to neonates on a special care baby unit. Br J Radiol. 62(735):230–233. DOI: 10.1259/0007-1285-62-735-230.
Longo M., Genovese E., Donatiello S., Cassano B. et al. Quantification of scatter radiation from radiographic procedures in a neonatal intensive care unit. Pediatr Radiol. 2018;48(5):715–721. DOI: 10.1007/s00247-018-4081-4.
Sjöberg P., Hedström E., Fricke K., Frieberg P. et al. Comparison of 2D and 4D Flow MRI in Neonates Without General Anesthesia. 2023;57(1):71–82. DOI: 10.1002/jmri.28303.
Hall E.J. Radiation biology for pediatric radiologists. Pediatr Radiol. 2009;39(1):S57–64. DOI: 10.1007/s00247-008-1027-2.
Olgar T., Onal E., Bor D., Okumus N. et al. Radiation exposure to premature infants in a neonatal intensive care unit in Turkey. Korean J Radiol. 2008;9(5):416–419. DOI: 10.3348/kjr.2008.9.5.416.
Gislason-Lee AJ. Patient X-ray exposure and ALARA in the neonatal intensive care unit: Global patterns. 2021;62(1):3–10. DOI: 10.1016/j.pedneo.2020.10.009.
Liu S., Chen J., Huang S., Chen T., et al. Analysis of the results of computed tomography of the C7 pedicle and lateral mass in children aged 0 to 14 years. Ann Anat. 2025;257:152349. DOI: 10.1016/j.aanat.2024.152349.
Di Gaeta E., Verspoor F., Savci D., Donner N. et al. Extranodal lymphoma of natural killer/T cells of skeletal muscles. Skeletal Radiol. 2024;54(1):141–146. DOI: 10.1007/s00256-024-04680-w.
Locke A., Kanekar S. Visualization in premature infants. Clin Perinatol. 2022;49(3):641–655. DOI: 10.1016/j.clp.2022.06.001.
Xia Yu., Yang M., Qian T., Zhou J. et al. Prediction of feeding difficulties in newborns with hypoxic-ischemic encephalopathy using radiological signs obtained by magnetic resonance imaging. Pediatrician. Radiol. 2024;54(12):2036–2045. DOI: 10.1007/s00247-024-06065-6.
Su Y.T., Chen Y.S., Ye L.R., Chen S.V. et al. Unnecessary radiation during diagnostic radiography in infants in the neonatal intensive care unit: retrospective cohort study research. Eur J Pediatr. 2023;182(1):343–352. DOI: 10.1007/s00431-022-04695-2.
Sookpeng S., Martin C.J. The determination of coefficients for size specific effective dose for adult and pediatric patients undergoing routine computed tomography examinations. J Radiol Prot. 2024;44(3). DOI: 10.1088/1361-6498/ad6faa.
Inoue Y., Mori M., Ito H., Mitsui K. et al. Age-related changes in the effective dose of CT scans of the brain in children: a comparison of assessment methods. Tomography. 2023;10(1):14–24. DOI: 10.3390/tomography10010002.
Kibrom B.T., Manyazewal T., Demma B.D., Feleke T.H. et al. New technologies in pediatric radiology: current developments and prospects for the future. Pediatrician. Radiol. 2024;54(9):1428–1436. DOI: 10.1007/s00247-024-05997-3.
Reyes M., Mayer R., Pereira S., Silva K.A. et al. On the interpretability of artificial intelligence in radiology: problems and opportunities. Radiol Artif Intell. 2020;2(3):e190043. DOI: 10.1148/ryai.2020190043.
Ono K., Akahane K., Aota T., Hada M. et al. Neonatal doses from X ray examinations by birth weight in a neonatal intensive care unit. Radiation protection and dosimetry. 2003;103(2):155–162. DOI: 10.1093/oxfordjournals.rpd.a006127.
Liu J., Lovrenski J., Ye Hlaing A., Kurepa D. Lung diseases in newborns: lung ultrasound or chest X-ray. J Matern Fetal Neonatal Med. 2021;34(7):1177–1182. DOI: 10.1080/14767058.2019.1623198.
Иванов Д.О., Моисеева К.Е., Юрьев В.К., Межидов К.С., Шевцова К.Г., Алексеева А.В., Яковлев А.В., Харбедия Ш.Д., Карайланов М.Г., Сергиенко О.И., Заступова А.А. Роль качества диспансерного наблюдения в период беременности в снижении младенческой смертности. Медицина и организация здравоохранения. 2023;8(4):4–15. DOI: 10.56871/MHCO.2023.28.69.001.
Oka Pernas R., Fernandez Canton G. Direct MR arthrography without image guidance: a practical guide to joints. Skeletal Radiol. 2024;54(1):17–26. DOI: 10.1007/s00256-024-04709-0.
Sharafi A., Arpinar V.E., Nenka A.S., Koch K.M. Development and analysis of the stability of hand kinematic parameters using 4D magnetic resonance imaging. Skeletal Radiol. 2024;54(1):57–65. DOI: 10.1007/s00256-024-04687-3.
Zoghbi W.A. Cardiovascular imaging: a glimpse of the future. Methodist debakey cardiovasc. 2014;10(3):139–45. DOI: 10.14797/mdcj-10-3-139.
Шабалов Н.П., Иванов Д.О., Цыбулькин Э.К. и др. Неонатология. Т. 2. М.: МЕДпресс-информ; 2004. EDN: QLGBMN.
Dupont T., Idir M.A., Hossu G., Sirvo F. et al. Signs of adhesive capsulitis of the shoulder joint on MRI: analysis of potential differences and improved diagnostic criteria. Skeletal Radiol. 2024;54(1):77–86. DOI: 10.1007/s00256-024-04677-5.
Forleo K., Carella M.K., Basile P., Mandunzio D. et al. Role magnetic resonance imaging in cardiomyopathy in the light of new recommendations: emphasis on tissue mapping. J Clin Med. 2024;13(9):2621. DOI: 10.3390/jcm13092621.
Rakha S., Batuti N.M., Abdelrahman A., El-Deri A.A. Multimodal imaging for complex noninvasive diagnosis of the aorto-left ventricular tunnel in infants. Echocardiography. 2024;41(1):e15761. DOI: 10.1111/echo.15761.
Moscatelli S., Pergola V., Motta R., Fortuny F. et al; Working Group on Congenital Heart Defects, Prevention of cardiovascular Diseases in Childhood of the Italian Society cardiologists (SIC). Multimodal visualization in Fallot tetralogy: from diagnosis to long-term follow-up. Children (Basel). 2023;10(11):1747. DOI: 10.3390/children10111747.
Ganti V.G., Gazi A.H., An S., Srivatsa A.V. et al. Assessment of stroke volume in congenital heart defects using wearable seismocardiography. Journal of the American Heart Association. 2022;11(18):e026067. DOI: 10.1161/JAHA.122.026067.
Androulakis E., Mohiaddin R., Bratis K. Magnetic resonance coronary angiography in the era of multimodal imaging. Clin Radiol. 2022;77(7):e489–e499. DOI: 10.1016/j.crad.2022.03.008.
Islam S., Parra-Farinas K., Mutusami P., Shroff M. Access to the subarachnoid space of the spinal cord in children using neuroimaging. Neuroimaging Clin N Am. 2024;35(1):155–165. DOI: 10.1016/j.nic.2024.08.007.
Косулин А.В., Елякин Д.В., Охлопкова Е.И., Придатко О.Г., Клыбанская Ю.В., Дворецкий В.С. Хирургическое лечение врожденного кифоза на фоне множественных пороков развития позвонков. Педиатр. 2018;9(1):112–117. DOI: 10.17816/PED91112-117.
Cheng Z. Low-dose prospective ECG-triggering dualsource CT angiography in infants and children with complex congenital heart disease: first experience. Eur radiol. 2010;20:2503–2511.
Nugraha H.G., Agustina M., Natapravira H.M. Diagnostic difficulties in type IV hiatal hernia: a look at visualization. Radiol Case Rep. 2024;20(1):437–441. DOI: 10.1016/j.radcr.2024.09.147.
Liu S., Chen J., Huang S., Chen T. et al. Analysis of the results of computed tomography of the C7 pedicle and lateral mass in children aged 0 to 14 years. Ann Anat. 2025;257:152349. DOI: 10.1016/j.aanat.2024.152349.
Di Gaeta E., Verspoor F., Savci D., Donner N. et al. Extranodal lymphoma of natural killer/T cells of skeletal muscles. Skeletal Radiol. 2024;54(1):141–146. DOI: 10.1007/s00256-024-04680-w.
Locke A., Kanekar S. Visualization in premature infants. Clin Perinatol. 2022;49(3):641–655. DOI: 10.1016/j.clp.2022.06.001.
Xia Yu., Yang M., Qian T., Zhou J. et al. Prediction of feeding difficulties in newborns with hypoxic-ischemic encephalopathy using radiological signs obtained by magnetic resonance imaging. Pediatrician. Radiol. 2024;54(12):2036–2045. DOI: 10.1007/s00247-024-06065-6.
Su Y.T., Chen Y.S., Ye L.R., Chen S.V. et al. Unnecessary radiation during diagnostic radiography in infants in the neonatal intensive care unit: retrospective cohort study research. Eur J Pediatr. 2023;182(1):343–352. DOI: 10.1007/s00431-022-04695-2.
Koenig A.M., Etzel R., Thomas R.P., Manken A.H. Individual radiation protection and appropriate dosimetry in interventional radiology: a review and prospects. Rofo. 2019;191(6):512–521. In English and German. DOI: 10.1055/a-0800-0113.
Brady S.L., Mohaupt T.H., Kaufman R.A. A comprehensive risk assessment method for pediatric patients undergoing research using ionizing radiation: how we answered the questions of the ethics commission. AJR Am J Roentgenol. 2015;204(5):W510–8. DOI: 10.2214/AJR.14.13892.
Tan S.M., Shah M.T.B.M., Chong S.L., Ong Yu.G. et al. Differences in radiation dose during computed tomography of the brain in pediatric patients in emergency departments: an observational study. Publication date in BMC. 2021;21(1):106. DOI: 10.1186/s12873-021-00502-7.
Inoue Y., Mori M., Ito H., Mitsui K. et al. Age-related changes in the effective dose of CT scans of the brain in children: a comparison of assessment methods. Tomography. 2023;10(1):14–24. DOI: 10.3390/tomography10010002.
Weiss D., Bires M., Rohwalski U., Fogle T.J. et al. Radiation exposure and the estimated risk of radiation-induced cancer during chest and abdominal X-rays in 1,307 newborns. Eur Radiol. 202416. DOI: 10.1007/s00330-024-10942-x.
Natali G.L., Cassanelli G., Polito K., Cannata V. et al. Dose dependence analysis during installation of percutaneous central venous catheters: the experience of the pediatric Center for Interventional Radiology. Children (Basel). 2022;9(5):679. DOI: 10.3390/children9050679.
Hunold P., Bucher A.M., Sandstede J., Janke R. et al. Statement by the German Society of Radiologists, the German Society of Neuroradiology and the Society of German-speaking Pediatric Radiologists on the requirements for conducting and describing MRI studies outside of radiology. Rofo. 2021;193(9):1050–1061. In English and German. DOI: 10.1055/a-1463-3626.
Chen B., Zhao S., Gao Y., Cheng Z. et al. Image quality and radiation dose in two promising protocols of double-source CT angiography and 128 ECG-triggered sections in infants with congenital heart defects. Int J Cardiovasc Imaging. 2019;35(5):937–945. DOI: 10.1007/s10554-018-01526-0.
Ellmann S., Nickel J.M., Heiss R., El-Amrani N. et al. Prognostic value of left ventricular mass obtained by CT perfusion in newborns with congenital heart defects. Diagnostics (Basel). 2021;11(7):1215. DOI: 10.3390/diagnostics11071215.