EVALUATION OF THE EFFICACY OF TREATMENT OF 3RD DEGREE BURNS WITH HLDF6 PEPTIDE AND SILVER NANOPARTICLES IN CARBOPOL 2020 GEL IN VIVO EXPERIMENT

  • A.S. Shabunin National Medical Research Center for Pediatric Traumatology and Orthopedics named after G.I. Turner. Parkovaya st., 64–68, Saint Petersburg, Pushkin, Russian Federation, 196603
  • E.V. Zinoviev Saint Petersburg institute of emergency care named after I.I. Dzhanelidze. Budapeshtskaya st. 3, Saint Petersburg, Russian Federation, 192242
  • S.V. Vissarionov National Medical Research Center for Pediatric Traumatology and Orthopedics named after G.I. Turner. Parkovaya st., 64–68, Saint Petersburg, Pushkin, Russian Federation, 196603
  • M.S. Asadulaev National Medical Research Center for Pediatric Traumatology and Orthopedics named after G.I. Turner. Parkovaya st., 64–68, Saint Petersburg, Pushkin, Russian Federation, 196603
  • A.Yu. Makarov National Medical Research Center for Pediatric Traumatology and Orthopedics named after G.I. Turner. Parkovaya st., 64–68, Saint Petersburg, Pushkin, Russian Federation, 196603
  • A.M. Fedyuk National Medical Research Center for Pediatric Traumatology and Orthopedics named after G.I. Turner. Parkovaya st., 64–68, Saint Petersburg, Pushkin, Russian Federation, 196603
  • T.S. Rybinskikh National Medical Research Center for Pediatric Traumatology and Orthopedics named after G.I. Turner. Parkovaya st., 64–68, Saint Petersburg, Pushkin, Russian Federation, 196603
  • P.A. Pershina Saint Petersburg institute of emergency care named after I.I. Dzhanelidze. Budapeshtskaya st. 3, Saint Petersburg, Russian Federation, 192242
  • D.V. Kostyakov Saint Petersburg institute of emergency care named after I.I. Dzhanelidze. Budapeshtskaya st. 3, Saint Petersburg, Russian Federation, 192242
  • A.V. Semiglazov Saint Petersburg institute of emergency care named after I.I. Dzhanelidze. Budapeshtskaya st. 3, Saint Petersburg, Russian Federation, 192242
  • S.N. Pyatakova Saint Petersburg institute of emergency care named after I.I. Dzhanelidze. Budapeshtskaya st. 3, Saint Petersburg, Russian Federation, 192242
Keywords: skin burn, human leukemia differentiation factor-6, combustiology, reparative regeneration, experimental study, traumatology-orthopedics, skin repair

Abstract

Introduction. Between 250 and 280 thousand victims of deep thermal burns of the skin are registered annually in the territory of the Russian Federation; in every 6 cases the victims are underage patients. The lethality rate in case of thermal trauma is 7.2 %, but in case of extensive deep burns it reaches 13–14 %. Early surgical treatment of patients with severe thermal burns is an accepted standard and therefore the search for wound healing agents reducing the period of treatment and the risk of infectious complications is essential. Objective. To evaluate the efficacy of carbopol hydrogel with injected silver nanoparticles and HLDF6 peptide in the treatment of thermal burns of grade III skin in vivo. Materials and methods. The structure of the work is represented by an experimental study. The work was performed on 50 male Wistar rats, with an average weight of 230–250 g. The animals were divided into 5 groups depending on the applied concentration of HLDF6 peptide in Carbopol 2020 gel. Carbopol ETD 2020 hydrogel samples (0.5 %) containing 0,00015 % nano-silver and HLDF6 peptide with concentrations of 0 %, 0,01 %, 0,001 %, 0,0001 % and 0,00001 % were used to evaluate efficacy. A planimetric method was used to assess the dynamics of wound healing. The obtained data were subjected to statistical analysis using the Mann–Whitney U-parameter. Results. Application of 0,0001 and 0,00001 % doses of the peptide HLDF6 demonstrated activation of the healing processes on the 14th day of the experiment by 45,8 % and 31,7 % correspondingly (p < 0,01), and also reduced the incidence of purulent complications by 62,5 % (p < 0,05). The peptide concentration of 0,01 % shows an increase in the duration of treatment, and 0,001 %, no significant differences in comparison with the control and experimental groups. Conclusion. The use of low doses of the HLDF6 peptide (volume concentration in the range of 10–4–10–5 %) in gel preparations in the treatment of deep thermal burns of the skin shows high efficacy. Small concentrations of HLDF6 peptide allow significant activation of wound healing processes.

References

Алексеев А.А. Комплексное лечение глубоких ожогов на основе применения хирургической некрэктомии и современных биотехнологических методов. Анналы хирургии. 2012; 6: 41–5.

Зиновьев Е.В., Цыган В.Н., Арцимович И.В. и др. Экспериментальная оценка эффективности местного лечения ожогов кожи гидрогелем легкодиспергируемого карбопола 2020 с пептидом человеческого лейкозного фактора дифференцировки-6. Вестник Российской военно-медицинской академии. 2020; 3(63): 48–152.

Копичев О.А., Николаев А.Е. Современные войны: анализ тенденций развития межгосударственного противоборства, классификация форм и способов борьбы, формирование признаков и критериев военного конфликта. Системы управления, связи и безопасности. 2021; 32(1): 1–32.

Лагвилава Т.О., Зиновьев Е.В., Ивахнюк Г.К. и др. Ранозаживляющие средства на основе карбополов. Известия Санкт-Петербургского государственного технологического института (Технического Университета). 2013; 18(44): 47–52.

Соснина А.В., Михайлова Е.С., Аутеншлюс А.И. и др. Классы и субклассы антител к фактору диф-ференцировки HLDF и пептидам гапонина, взаимосвязь их уровня с патогистологическими параметрами аденокарцином толстой кишки. Иммунология. 2012; 2: 92–3.

Сысоева Г.М., Даниленко Е.Д., Масычева В.И. и др. Влияние пептида HLDF-6 на пролиферативную активность спленоцитов в культуре клеток на фоне введения агонистов опиатных рецепторов. Сибирский медицинский журнал. 2009; 4: 55–9.

Усков В.М., Усков М.В. Основные задачи службы медицины катастроф в условиях чрезвычайных ситуаций мирного и военного времени. Вестник Воронежского государственного технического университета. 2010. Доступен по: https://cyberleninka.ru/article/n/osnovnye-zadachi-sluzhby-meditsiny-katastrof-v-usloviyah-chrezvychaynyh-situatsiy-mirnogo-i-voennogo-vremeni (дата обращения: 07.06.2023).

Ali Y., Ali T. Nandrolone decanoate safely combats catabolismin burned patients: A new potential indication after recall. Burns. 2022; 48(1): 59–68.

Bakadia B.M., Lamboni L., Abeer A.Q. Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infec­ted large burn wound healing: Systemic evaluation. Smart Mater. Med. 2023; 4: 37–58.

Behshood P., Rezaei M. A glimpse into the use of silver-nanoparticles as a promising treatment for burn wounds Burns. 2023; 49(1): 241–3.

Cao Y.L., Liu Z.C., Chen X.L. Efficacy of hydrosurgical excision combined with skin grafting in the treatment of deep partial-thickness and full-thickness burns: A two-year retrospective study. Burns. 2022. Available at: https://www.researchgate.net/publication/362350344_Efficacy_of_hydrosurgical_excision_combined_with_skin_grafting_in_the_treatment_of_deep_partial-thickness_and_full-thickness_burns_a_two-year_retrospective_study (accessed 07.06.2023).

Cenkey A., Hargitai E., Pakai E. et al. Effectiveness of four topical treatment methods in a rat model of superficial partial-thickness burn injury: the advantages of combining zinc-hyaluronan gel with silver foam dressing. Injury. 2022; 53(12): 3912–9.

Dobrovolskaya I.P., Yudin V.E., Popryadukhin P.V., Lebedeva I.O. In vivo study of the nanofiber-based composite wound dressing intended for treatment of deep skin wounds. J. Appl. Cosmetol. 2016; 34(1): 1–8.

Evdokimov V.I., Kourov A.S. Genesis of research on burn injury (ana­lysis of domestic articles in 2005–2017). Medico-Biological Socio-Psychological Issues Saf. Emerg. Situations. 2019; 6(4): 108–20.

Baassiri M., Dosh L., Haidar H. et al. Nerve growth factor and burn wound healing: Update of molecular interactions with skin cells. Burns. 2022. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0305417922002820?via %3Dihub (accessed 07.06.2023).

Gragnani A., Tonarelli E., Chomiski V. et al. Fibroblast growth factor in the treatment of burns: A systematic review. Burns. 2022; 48(1): 104–10.

Haik J., Segalivich M., Visentin D. et al. Comparison of stationary and dynamic fractional CO2 laser modalities of large burns treatment: Experimental laboratory model. Burns. 2021; 49(1):162–8.

Issler-Fisher A.C. The importance of biomechanics and the kinetic chains of human movement in the development and treatment of burn scars — A narrative review with illustrative cases. Burns. 2022; 49(3): 707–15.

Keyloun J.W. Assessing Factor V Antigen and Degradation Pro­ducts in Burn and Trauma Patients. J. Surg. Res. 2022; 274: 169–77.

Muthukumar V., Dash S., Danish A. F. et al. Fibrin sealant for split-thickness skin graft fixation in burn wounds — An ancillary postulated role in scar modulation. Wound Med. 2020; 31: 00197.

Ozturk S., Karagoz H. Experimental stem cell therapies on burn wound: Do source, dose, timing and method matter? Burns. 2015; 41(6): 1133–9.

Sun T.C., Yan B.Y., Ning X.C. et al. Cool and hot chitosan/platelet-derived growth factor nanofibers for outdoors burns. Int. J. Biol. Macromol. 2022; 218: 409–19.

Sun T.C. Icy core–shell composite nanofibers with cooling, antibacterial and healing properties for outdoor burns. J. Colloid Interface Sci. 2023; 629: 206–16.

Zinovyev E.V. Experience of stem cell use in treatment of skin burns. Pediatr. 2018; 9(4): 12–27

Published
2024-02-06
How to Cite
Shabunin, A., Zinoviev, E., Vissarionov, S., Asadulaev, M., Makarov, A., Fedyuk, A., Rybinskikh, T., Pershina, P., Kostyakov, D., Semiglazov, A., & Pyatakova, S. (2024). EVALUATION OF THE EFFICACY OF TREATMENT OF 3RD DEGREE BURNS WITH HLDF6 PEPTIDE AND SILVER NANOPARTICLES IN CARBOPOL 2020 GEL IN VIVO EXPERIMENT. Russian Biomedical Research, 8(3), 4-11. https://doi.org/10.56871/RBR.2023.37.44.001
Section
Статьи

Most read articles by the same author(s)