MORPHOFUNCTIONAL STATE OF THE LIVER IN RATS WITH FATTY HEPATOSIS MODELING AND ALTERED THYROID STATUS

  • A.A. Kondratenko Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044
  • N.D. Prokhorova Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044
  • A.A. Minchenko Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044
  • A.I. Poloskov Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044
  • N.S. Dedanishvili Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • S.S. Purveev Saint Petersburg State Pediatric Medical University. Lithuania 2, Saint Petersburg, Russian Federation, 194100
  • R.I. Glushakov Military Medical Academy named after S.M. Kirov. Akademician Lebedeva St., 6, Saint Petersburg, Russian Federation, 194044 https://orcid.org/0000-0002-0161-5977
Keywords: non-alcoholic fatty liver disease, thyroid status, rats

Abstract

Introduction. The prevalence of thyroid pathology, along with the increasing incidence of hepatobiliary diseases, necessitates studying the influence of thyroid status on the “natural history” of liver disease development. Objective. To evaluate the morphofunctional state of the liver in rats with drug-induced hypo- and hyperthyroidism using a model of chronic fatty hepatosis. Materials and methods. Models of hyperthyroidism (I) and hypothyroidism (II) were reproduced. Animals in the experimental groups received 15 and 30% fructose solutions instead of drinking water. Decapitation was performed after 45 days. Liver fragments were fixed in 10% neutral formalin for 24 hours. Sections with a thickness of 3–4 μm were prepared and subjected to histological examination. Results. The vascularization index was highest in group I with a 15% fructose load. Liver sinusoids occupied the maximum area relative to the area of the liver tissue image. With a 30% fructose load against a background of hypo- and hyperthyroidism, the lumen of the sinusoids appeared narrowed. The relative content of connective tissue in the liver parenchyma of the experimental groups did not statistically significantly depend on the thyroid status and the level of fructose load. The inflammatory activity index averaged 5–6 points in all experimental groups. Condition I influenced the volume of infiltration by neutrophils, while dystrophic changes in hepatocytes were more dependent on the level of fructose load. Pronounced granular dystrophy of hepatocytes was revealed in all experimental groups, as well as a decrease in glycogen stores. In group II, already at a 15% fructose load, individual cells were in a state of ballooning degeneration. With a twofold increase in fructose consumption, discomplexation of hepatic plates, granular protein structures, and significant lipid accumulation in the cytoplasm of hepatocytes were observed in groups I and II. Conclusions. A high level of thyroid hormones significantly affects the indicators of inflammatory and proliferative activity of liver tissue. A low level of thyroid hormones affects the severity of dystrophic changes in hepatocytes. With an increase in fructose load, both with hypo- and hyperthyroidism, hepatocytes undergo intense dystrophic changes.

References

Абдулхабирова Ф.М., Абросимов А.Ю., Александрова Г.Ф. и др. Эндокринология. Москва: ГЭОТАР-Медиа, 2016. EDN: YPFEXX.

Брус Т.В., Васильев А.Г. Современное представление о неалкогольной жировой болезни печени. Российские биомедицинские исследования. 2020;5(1):18–25.

Брус Т.В., Васильев А.Г., Пюрвеев С.С. и др. Неалкогольная жировая болезнь печени как фактор риска анемии хронического воспаления (экспериментальное исследование). Acta Biomedica Scientifica (East Siberian Biomedical Journal). 2023;8(3):209–215. DOI: 10.29413/ABS.2023-8.3.23. EDN: USXRWN.

Брус Т.В., Евграфов В.А. Патофизиология печеночной недостаточности. Педиатр. 2022;13(3):55–64. DOI: 10.17816/PED13355-64.

Глушаков Р.И., Прошин С.Н., Дробленков А.В., Тапильская Н.И. Морфологические изменения молочной железы и яичников у мышей с экспериментально измененным тиреоидным статусом. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2014;21(1):81–87.

Латыпов И.А., Пюрвеев С.С., Некрасов М.С., Деданишвили Н.С., Тагиров Н.С. Современные представления о механизмах артериального тромбоза. Артериальный тромбоз при новой коронавирусной инфекции. Российские биомедицинские исследования. 2023;8(3):61–68. DOI: 10.56871/RBR.2023.85.16.008.

Медяник М.И., Похлебкина А.А., Мильнер Е.Б. Ожирение и щитовидная железа. Некоторые механизмы взаимосвязи. Университетский терапевтический вестник. 2021;3(2):13–24.

Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of li­ver diseases in the world. J Hepatol. 2019;70(1):151–171. DOI: 10.1016/j.jhep.2018.09.014.

Cooper D.S., Biondi B. Subclinical thyroid disease. Lancet. 2012;379(9821):1142–1154. DOI: 10.1016/S0140-6736(11)60276-6.

Davis P.J., Mousa S.A., Lin H.Y.. Nongenomic actions of thyroid hormone: the integrin component. Physiol Rev. 2021;101(1):319–352. DOI: 10.1152/physrev.00038.2019. Erratum in: Physiol Rev. 2023;103(1):607.

Ettleson M.D. Cardiovascular outcomes in subclinical thyroid disease: an update. Curr Opin Endocrinol Diabetes Obes. 2023;30(5):218–224. DOI: 10.1097/MED.0000000000000818.

Gionfra F., De Vito P., Pallottini V., Lin H.Y., Davis P.J., Peder­sen J.Z., Incerpi S. The role of thyroid hormones in hepatocyte proli­feration and liver cancer. Front Endocrinol (Lausanne). 2019;10:532. DOI: 10.3389/fendo.2019.00532.

Huang B., Wen W., Ye S. TSH−SPP1/TRβ−TSH positive feedback loop mediates fat deposition of hepatocyte: Crosstalk between thyroid and liver. Front Immunol. 2022;13:1009912.

Lasa M., Contreras-Jurado C. Thyroid hormones act as modu­lators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne). 2022;13:937099. DOI: 10.3389/fendo.2022.937099.

Liao C.J., Huang P.S., Chien H.T., Lin T.K., Yeh C.T., Lin K.H. Effects of thyroid hormones on lipid metabolism pathologies in non-alcoholic fatty liver disease. Biomedicines. 2022;10(6):1232.

Marschner R.A., Arenhardt F., Ribeiro R.T., Wajner S.M. Influence of altered thyroid hormone mechanisms in the progression of metabolic dysfunction associated with fatty liver disease (Mafld): A systematic review. Metabolites. 2022;12(8):675.

Mousa S.A., Lin H.Y., Tang H.Y., Hercbergs A., Luidens M.K., Davis P.J. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis. 2014;17(3):463–469. DOI: 10.1007/s10456-014-9418-5.

Younossi Z., Tacke F., Arrese M., Chander Sharma B., Mostafa I., Bugianesi E., Wai-Sun Wong V., Yilmaz Y., George J., Fan J., Vos M.B. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatol. 2019;69(6):2672–2682. DOI: 10.1002/hep.30251.

Zhang D., Wei Y., Huang Q., Chen Y., Zeng K., Yang W., Chen J., Chen J. Important hormones regulating lipid metabolism. Molecules. 2022;27(20):7052. DOI: 10.3390/molecules27207052.

Zhou J., Tripathi M., Ho J.P., Widjaja A.A., Shekeran S.G., Camat M.D., James A., Wu Y., Ching J., Kovalik J.P., Lim K.H., Cook S.A., Bay B.H., Singh B.K., Yen P.M. Thyroid hormone decreases hepatic steatosis, inflammation, and fibrosis in a die­tary mouse model of nonalcoholic steatohepatitis. Thyroid. 2022;32(6):725–738. DOI: 10.1089/thy.2021.0621.

Published
2024-10-18
How to Cite
Kondratenko, A., Prokhorova, N., Minchenko, A., Poloskov, A., Dedanishvili, N., Purveev, S., & Glushakov, R. (2024). MORPHOFUNCTIONAL STATE OF THE LIVER IN RATS WITH FATTY HEPATOSIS MODELING AND ALTERED THYROID STATUS. Russian Biomedical Research, 9(3), 5-14. https://doi.org/10.56871/RBR.2024.58.48.001
Section
Статьи

Most read articles by the same author(s)