EMERGENCE OF A CLUSTER OF BIOCHEMICAL INDICATORS THE FUNCTIONAL STATE OF THE BODY
Abstract
The possibility of using computer technology in the formation of a set of typical biomarker indicators characterizing the state of the body, necessary in the preliminary procedure for the synthesis of judgments about the functional state of the human body, is shown. Using a typical set of biomarkers, the possibility of creating a mathematical model is demonstrated, which is reproduced on the basis of basic terms and axiomatic concepts of biological thermodynamics used to solve numerous problems of medical diagnostics.
References
Макаров Л.М. Формализм вычисления оценки эмерджентности. Наука, техника и образование. 2020; 1(65): 5–8. DOI: 10.24411/2312-8267-2020-10101.
Makarov L., Pozdnyakov A. Telomere and life metrics. Prospects and key tendencies of science in contemporary world Proceedings of XVII International Multidisciplinary Conference. М.; 2022: 6–9. DOI: 10.32743/Spain Conf.2022.3.17.336039.
Макаров Л.М. Информационная энтропия International scientific review of the problems and prospects of modern science and education. Collection of scientific articles LXVII International correspondence scientific and practical conference. 2020: 7–12. DOI: 10.24411/2542-0798-2020-16702.
Макаров Л.М., Поздняков А.В. МРТ диагностика и компьютерный анализ. International science review of the problems and prospects of modern science and education. LVIII international correspondence scientific and practical conference. Editor: Emma morgan. 2019: 98–105. DOI: 10.24411/2542-0798-2019-15802.
Bergamaschi R., Berzuini C., Romani A., Cosi V. Predicting secondary progression in relapsing — remitting multiple sclerosis: a Bayesian analysis. J Neurol Sci. 2001; 189(1-2): 13–21. DOI: 10.1016/S0022-510X(01)00572-X.
Boyko A.N., Mugutdinova B.T., Mugutdinov T.M. Prognostic significance of neuropsychological tests in patients with typical remitting multiple sclerosis. Medicinskij Alfavit. 2018; 2(17): 354. Accessed February 9, 2021.
Tilling K., Lawton M., Robertson N. et al. Modelling disease progression in relapsing-remitting onset multiple sclerosis using multilevel models applied to longitudinal data from two natural history cohorts and one treated cohort.
Health Technol Assess Winch Engl. 2016; 20(81): 1–48. DOI: 10.3310/hta20810
Pritzker L.B., Joshi S., Harauz G. Biochemistry. 2000; 39(18): 5382–8.