THE ROLE OF MACROPHAGE-DEPENDENT INFLAMMATORY PROCESSES IN THE FORMATION OF UNSTABLE ATHEROSCLEROTIC LESIONS
Abstract
Background. Mononuclear cells (lymphocytes and macrophages) play a significant role in the pathogenesis of atherosclerotic lesions, as well as acute and chronic inflammatory processes in the maxillofacial region. Monocytes circulating in the blood penetrate the vascular wall, where they differentiate into macrophages and spread in the focus of atherosclerotic lesions. Purposes and tasks. A study was made of the role of lymphocytes and macrophages in the formation of immunoinflammatory reactions in the formation of stable and unstable atherosclerotic lesions in humans. Materials and methods. The degree of infiltration of the vascular wall by mononuclear cells was detected by staining the sections with Mayer’s hematoxylin with additional staining with an aqueous-alcoholic solution of eosin. Morphometric analysis of the content of mononuclear cells was performed in the intima and adventitia in normal areas of the vascular wall, in lipid spots, in unstable and stable atherosclerotic plaques. Results. It has been established that the quantitative content of small and medium-sized lymphocytes and macrophages in unstable atherosclerotic lesions is significantly higher compared to the norm, the initial stage of the lesion and stable atherosclerotic plaque. The number of mononuclear cells increases not only in the intima, but also in the atheromatous nucleus of an unstable plaque and in the arterial adventitia areas under atherosclerotic lesions. Conclusion. An increase in the content of mononuclear cells in unstable atherosclerotic lesions indicates the participation of lymphocytes and macrophages in their formation.
References
Алексеев В.В., Алипов А.Н., Андреев В.А. и др. Медицинские лабораторные технологии: Руководство по клинической лабораторной диагностике в 2-х томах. Том 2. М.: ГЭОТАР-Медиа; 2013.
Василенко В.С., Курникова Е.А., Гостимский В.А. и др. Уровни ИЛ-4, ИЛ-8 и ФНО-α у мужчин среднего возраста со стентированными коронарными артериями после повторной реваскуляризации миокарда. Педиатр. 2021; 12(3): 43–50. DOI: 10.17816/PED12343-50.
Воронцов И.М., Шаповалов В.В., Шерстюк Ю.М. Здоровье. Создание и применение автоматизированных систем для мониторинга и скринирующей диагностики нарушений здоровья: опыт разработки и обоснование применения автоматизированных систем для мониторинга и скринирующей диагностики нарушений здоровья. СПб.: Коста; 2006.
Гостимский В.А., Василенко В.С., Курникова Е.А. и др. Цитокиновый статус у мужчин среднего возраста с острым коронарным синдромом после стентирования коронарных артерий. Педиатр. 2021; 12(2): 5–12. DOI: 10.17816/PED1225-12.
Пигаревский П.В., Снегова В.А., Назаров П.Г. Макрофаги и их роль в дестабилизации атеросклеротической бляшки. Кардиология. 2019; 59(4): 88–91. https://doi.org/10.18087/cardio.2019.4.10254.
Пигаревский П.С., Снегова В.А., Мальцева С.В., Давыдова Н.Г. Т-лимфоциты и макрофаги в нестабильных атеросклеротических поражениях у человека. Цитокины и воспаление. 2015; 14(2): 84–7.
Пигаревский П.В., Яковлева О.Г., Мальцева С.В., Гусева В.А. Роль клеточной пролиферации в атерогенезе и при дестабилизации атеросклеротической бляшки у человека. Медицинский академический журнал. 2019; 19(2): 7–12. https://doi.org/10.17816/MAJ1927-12.
Щеглов Д.С., Василенко В.С., Авдеева М.В. Состояние клеточного и гуморального иммунитета у больных с мультифокальным атеросклеротическим поражением различных сосудистых бассейнов. Медицина: теория и практика. 2017; 2(3): 3–7.
Chinetti-Gbaguidi G., Colin S., Staels B. Macrophage subsets in atherosclerosis. Nature Reviews Cardiology. 2015; 12(1): 10–7. https://doi.org/10.1038/nrcardio.
Choi H., Dey A.K., Priyamvara A. et al. Role of Periodontal Infection, Inflammation and Immunity in Atherosclerosis. Curr Probl Cardiol. 2021; 46(3): 100638. https://doi.org/10.1016/j.cpcardiol.2020.100638.
Gregory A. Roth, George A. Mensah, Valentin Fuster et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study J Am Coll Cardiol. 2020; 76(25): 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.
Vasilenko V.S., Avdeeva M.V., Shcheglova L.V., Shcheglov D.S. Features of cellularand humoral immunore activity in patients with stable angina and their role in the progression of athrosclerotic lesions. International Journal of Pharmaceutical Research. 2019; 11(1): 580–5. https://doi.org/10.31838/ijpr/2019.11.01.078.
Lesnik P., Haskell C.A., Charo I.F. Decreased atherosclerosis in CX3CR1–/– mice reveals a role for fractalkine in atherogenesis. J Clin Invest. 2003; 111(3): 333–40. https://doi.org/10.1172/JCI15555.
Li B., Xia Y., Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci. 2020; 77(14): 2751–69. https://doi.org/1007/s00018-020-03453-7.
Lin J., Huang D., Xu H. et al. Macrophages: A communication network linking Porphyromonas gingivalis infection and associated systemic diseases. Front Immunol. 2022; 27(13): 952040. https://doi.org/10.3389/fimmu.2022.952040.
Locati M., Curtale G., Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 2020; 15: 123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.
Park I., Kassiteridi C., Monaco C. Functional diversity of macrophages in vascular biology and disease. Vascular Pharmacology. 2017; 99: 13–22. https://doi.org/10.1016/j.vph.2017.10.005.
Robbins C.S., Hilgendorf I., Weber G.F. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013; 19(9): 1166–72. https://doi.org/10.1038/nm.3258.
Sun X., Gao J., Meng X. et al. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol. 2021; 12: 763334. https://doi.org/10.3389/fimmu.2021.763334.
Xu H., Jiang J., Chen W. et al. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019; 2019: 4354786. https://doi.org/10.1155/2019.
Zhang J., Xie M., Huang X. et al. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front Immunol. 2021; 12: 766560. https://doi.org/10.3389/fimmu.2021.766560.
Zhu X., Huang H., Zhao L. PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Frontiers in Cell and Developmental Biology. 2022; 10: 856118. https://doi.org/10.3389/fcell.2022.856118.